@article { author = {Gharaylou, Maryam and Sabetghadam, Samaneh and Ghader, Sarmad}, title = {Feasibility study of lightning event prediction using WRF mesoscale model in Iran}, journal = {Journal of the Earth and Space Physics}, volume = {42}, number = {1}, pages = {213-220}, year = {2016}, publisher = {Institute of Geophysics, University of Tehran}, issn = {2538-371X}, eissn = {2538-3906}, doi = {10.22059/jesphys.2016.54753}, abstract = {Lightning is a characteristic of severe weather and often associated with hail and heavy rainfall. It is a natural hazard with potential threat to human life and considerable damages to aviation structures. Therefore, lightning prediction is critical and the real-time lightning detection systems are able to determine the location of cloud-to-ground (CG) lightning strikes accurately.Generally many indices are used to predict the thunderstorms such as K-Index (KI), Convective Available Potential Energy (CAPE) and Cloud Physics Thunder Parameter (CPTP) that are based on thermodynamic instability parameters. Lightning Potential Index (LPI) is an advanced index for evaluating the potential for lightning activity introduced by Yair et al. (2010) based on the dynamics and microphysics of clouds. According to Yair et al. (2010), LPI is estimated within the charge separation zone of clouds, between 0oC and 20oC, where the non-inductive mechanism involving collisions of ice and graupel particles in the presence of super-cooled water is dominant (Saunders et al., 1991).In the current study, the meso-scale Weather Research and Forecasting (WRF) model has been used to predict LPI over the northern part of Iran for two case studies of thundercloud event on 9 December 2013 and 25 May 2014. The WRF model is a fully compressible, nonhydrostatic atmospheric model, which uses a terrain-following hydrostatic vertical pressure coordinates (Skamarock et al., 2008). In the present research, WRF version 3.6.1 is used to simulate historical thundercloud event in Iran region. The model was run at 36 km, 12 km, 4 km and 1.333 km grid spacing. The inner domain is containing Tehran urban area. The Rapid radiative transfer model (Mlawer et al., 1997) with the Dudhia scheme (Dudhia, 1989) was used to simulate the long- and short-wave radiation, respectively. The Monin-Obukhov scheme was used to simulate surface layer fluxes (Janjic, 1996) and the Mellor-Yamada-Janjic turbulent kinetic energy (TKE) scheme was used to simulate boundary layer fluxes (Mellor and Yamada, 1982; Janjic, 1990, 1994). The land surface fluxes were obtained from NOAA model (Chen and Dudhia, 2001, modified by Liu et al., 2006). The Kain-Fritsch scheme was used on the 36 and 12 km grids to parameterize moist convection (Kain and Fritsch, 1993) and the Thompson microphysical scheme was used on the 4 and 1.333 km grids to parameterize microphysical processes. The simulated values of mixing ratios of hydrometers and vertical velocity have been used to calculate the LPI. Results were evaluated using Cloud-to-ground (CG) lightning flash data from NASA Lightning Imaging Sensor (LIS) and one of the common indices used for forecasting thunderstorms which rely on stability and thermodynamical indices such as K index. Results show that there is a good consistency of both the location of lightning occurrence between the model outputs and LIS data for both understudied cases. Besides, the LPI gives more localized estimation of the location of lightning occurrence compared to the KI. Since K index is not derived from the microphysical fields, it seems to be much less useful for accurate prediction of lightning. Thus LPI provided important information to predict the potential for lightning.}, keywords = {Lightning,LPI,prediction,WRF model,LIS,KI}, title_fa = {امکان سنجی پیش بینی رخداد آذرخش با استفاده از مدل میان مقیاس WRF در منطقه ایران}, abstract_fa = {امروزه با استفاده از مدل های پیش بینی عددی وضع هوا و شناخت بیشتر پدیده های مخرّب جوی می توان از خسارت های ناشی از آنها جلوگیری کرد. یکی از بلایای جوی و اقلیمی، آذرخش است که شبیه سازی های صریح از فرآیندهای در مقیاس ابر می توانند به پیش بینی رخداد آن منجر شوند. در این پژوهش، با استفاده از شبیه سازی های جریان های بالارو و پارامترهای خردفیزیکی ابر شامل نسبت های اختلاط یخ، برف و گویچه برف به کمک مدل پیش بینی عددی میان مقیاسWRF، امکان رخداد آذرخش (LPI) برآورد می شود. LPI، انرژی جنبشی جریان بالارو در ابر همرفتی در حال توسعه است که با پتانسیل تفکیک بار بر مبنای نسبت های یخ و آب مایع در منطقه بار مقیاس بندی می شود. درستی نتایج پیش بینی امکان رخداد آذرخش با استفاده از داده های مشاهداتی سنجنده LIS و یکی از شاخص های ناپایداری شبیه سازی شده بر مبنای پارامترهای ناپایداری ترمودینامیکی (برای نمونه KI) در دو مطالعه موردی از رخداد طوفان تندری ارزیابی می شود. نتایج نشان می دهد که LPI پیش نشانگر مفیدی برای امکان رخداد آذرخش است. مقادیر KI پهنه وسیع مستعد فعالیت همرفتی و دارای احتمال بالای رخداد آذرخش را پیش بینی می کند. مقایسه نتایج پیش بینی شده KI و شاخص LPI با مقادیر بدست آمده از داده های مشاهداتی سنجده LIS بیانگر آن است که پیش بینی مکان رخداد آذرخش با استفاده از پارامترهای خردفیزیک ابر نسبت به پارامترهای ترمودینامیکی با دقت بیشتری انجام می شود.}, keywords_fa = {Lightning,LPI,prediction,WRF model,LIS,KI}, url = {https://jesphys.ut.ac.ir/article_54753.html}, eprint = {https://jesphys.ut.ac.ir/article_54753_bb29815c7e82291dca50565f12bb3389.pdf} }