@article { author = {کلایی, محمدجواد and اسماعیلی, امین}, title = {Self-Consistent hot spot tracing particles by kinetic simulations: With the emphasis on Cusp particle entry}, journal = {Journal of the Earth and Space Physics}, volume = {42}, number = {4}, pages = {73-79}, year = {2016}, publisher = {Institute of Geophysics, University of Tehran}, issn = {2538-371X}, eissn = {2538-3906}, doi = {10.22059/jesphys.2016.60291}, abstract = {One of the most important advantages of particle simulation as compared to fluid simulation is the capacity for working with and tracing particles. In particle simulations, the test particle method is usually used to get some idea of the behavior of plasma or other substances. In this method, first, a small number of particles are injected into the frame of static electromagnetic fields. Then, movement of particles is investigated using the pattern of the electromagnetic fields. This method is useful; however, as it is needed to work with non self-consistent fields, it lacks precision. In this work, we adapted the particle simulations method, adding the flexibility of working with self-consistent fields that come directly from the simulation. Here we have tried to investigate particle entry from the solar wind with northward Interplanetary Magnetic Field (IMF) to the magnetospheric cusp. As our initial results show, self-consistent path of particles does not follow the magnetic field lines going to the cusp that is slightly in contrast to the conventional non self-consistent results from test particle method. One of the most important advantages of particle simulation as compared to fluid simulation is the capacity for working with and tracing particles. In particle simulations, the test particle method is usually used to get some idea of the behavior of plasma or other substances. In this method, first, a small number of particles are injected into the frame of static electromagnetic fields. Then, movement of particles is investigated using the pattern of the electromagnetic fields. This method is useful; however, as it is needed to work with non self-consistent fields, it lacks precision. In this work, we adapted the particle simulations method, adding the flexibility of working with self-consistent fields that come directly from the simulation. Here we have tried to investigate particle entry from the solar wind with northward Interplanetary Magnetic Field (IMF) to the magnetospheric cusp. As our initial results show, self-consistent path of particles does not follow the magnetic field lines going to the cusp that is slightly in contrast to the conventional non self-consistent results from test particle method. One of the most important advantages of particle simulation as compared to fluid simulation is the capacity for working with and tracing particles. In particle simulations, the test particle method is usually used to get some idea of the behavior of plasma or other substances. In this method, first, a small number of particles are injected into the frame of static electromagnetic fields. Then, movement of particles is investigated using the pattern of the electromagnetic fields. This method is useful; however, as it is needed to work with non self-consistent fields, it lacks precision. In this work, we adapted the particle simulations method, adding the flexibility of working with self-consistent fields that come directly from the simulation. Here we have tried to investigate particle entry from the solar wind with northward Interplanetary Magnetic Field (IMF) to the magnetospheric cusp. As our initial results show, self-consistent path of particles does not follow the magnetic field lines going to the cusp that is slightly in contrast to the conventional non self-consistent results from test particle method.}, keywords = {self-consistent hot spot tracing,cusp particle entry,test particles method,IMF,Solar wind,Magnetosphere}, title_fa = {Self-Consistent hot spot tracing particles by kinetic simulations: With the emphasis on Cusp particle entry}, abstract_fa = {One of the most important advantages of particle simulation as compared to fluid simulation is the capacity for working with and tracing particles. In particle simulations, the test particle method is usually used to get some idea of the behavior of plasma or other substances. In this method, first, a small number of particles are injected into the frame of static electromagnetic fields. Then, movement of particles is investigated using the pattern of the electromagnetic fields. This method is useful; however, as it is needed to work with non self-consistent fields, it lacks precision. In this work, we adapted the particle simulations method, adding the flexibility of working with self-consistent fields that come directly from the simulation. Here we have tried to investigate particle entry from the solar wind with northward Interplanetary Magnetic Field (IMF) to the magnetospheric cusp. As our initial results show, self-consistent path of particles does not follow the magnetic field lines going to the cusp that is slightly in contrast to the conventional non self-consistent results from test particle method.}, keywords_fa = {self-consistent hot spot tracing,cusp particle entry,test particles method,IMF,Solar wind,Magnetosphere}, url = {https://jesphys.ut.ac.ir/article_60291.html}, eprint = {https://jesphys.ut.ac.ir/article_60291_38b0ec911d887f766a1bee408b26b3d1.pdf} }