Institute of Geophysics, University of TehranJournal of the Earth and Space Physics2538-371X41420151222Attenuation of Fourier spectra for 2012 Aharâ€“Varzaghan earthquakes, Northwestern IranAttenuation of Fourier spectra for 2012 Aharâ€“Varzaghan earthquakes, Northwestern Iran23385602910.22059/jesphys.2015.56029FAMeghdadSamaeiPostdoctoral Researcher, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, JapanMasakatsuMiyajimaProfessor, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, JapanNobuotoNojimaProfessor, Department of Civil Engineering, Gifu University, Gifu, JapanJournal Article20140715In this research, we have used 102 strong motion recordings from 2012 Ahar-Varzaghan earthquakes (Mw=6.5 and Mw=6.3) to study the form of attenuation of shear wave Fourier amplitude spectra of those two events. The analysis is carried out in a broad-band frequency range from 0.1 to 20 Hz. A bilinear shape for geometrical spreading is assumed based on nonparametric regression of the data. The hinge point of the bilinear shape is around 60 km away from the earthquake source; the geometric spreading forms for the first and second segments are R-0.9 and R-0.5, respectively. The results of this study show that there is considerable dependency of the rate of geometrical spreading on frequency. If only frequencies above 1 Hz are considered, the first segment of geometrical spreading will have a slope steeper than R-1. In contract, for lower frequencies it has a gentle slope. The associated quality factor for the assumed shape of geometrical spreading (appropriate for frequencies logarithmically spaced between 0.1 to 20 Hz) is Q(f)=148 f 0.62. The estimated Q(f) in this study agrees well with the other estimated shear wave quality factors in the region; however, if the whole attenuation model (consisted of geometrical spreading and quality factor) is considered, there will be conspicuous differences between different models.In this research, we have used 102 strong motion recordings from 2012 Ahar-Varzaghan earthquakes (Mw=6.5 and Mw=6.3) to study the form of attenuation of shear wave Fourier amplitude spectra of those two events. The analysis is carried out in a broad-band frequency range from 0.1 to 20 Hz. A bilinear shape for geometrical spreading is assumed based on nonparametric regression of the data. The hinge point of the bilinear shape is around 60 km away from the earthquake source; the geometric spreading forms for the first and second segments are R-0.9 and R-0.5, respectively. The results of this study show that there is considerable dependency of the rate of geometrical spreading on frequency. If only frequencies above 1 Hz are considered, the first segment of geometrical spreading will have a slope steeper than R-1. In contract, for lower frequencies it has a gentle slope. The associated quality factor for the assumed shape of geometrical spreading (appropriate for frequencies logarithmically spaced between 0.1 to 20 Hz) is Q(f)=148 f 0.62. The estimated Q(f) in this study agrees well with the other estimated shear wave quality factors in the region; however, if the whole attenuation model (consisted of geometrical spreading and quality factor) is considered, there will be conspicuous differences between different models.https://jesphys.ut.ac.ir/article_56029_a5b68556855166cb70a4ddb97739ef52.pdf