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Abstract 17 

Identification of gas reservoirs as a main natural resource due to its economic importance has 18 

always been one of the most important issues in research studies in the oil and gas field. Accurate 19 

localization of a gas reservoir through seismic data has been broadly studied. The final destination 20 

of all seismic attributes is to distinguish a specific feature. Accordingly, many seismic attributes 21 

have been developed among which short time Fourier transform (STFT)-based methods play an 22 

important role. The location of gas reservoirs can be detected taking advantage of its particular 23 

criteria in seismic data. Generally seismic signals are nonstationary as their frequency responses 24 

vary with time. So we propose an attribute which utilizes mixed components of STFT (MC-STFT). 25 

The novelty about this method is that without altering STFT method or adding any complexity, 26 

MC-STFT is able to detect gas reservoirs at high resolution. Simplicity and time efficiency can 27 

make a method superior. In fact, this method takes advantage of extracting three frequency 28 
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components obtained by STFT. In the next step, we can do the second iteration of the procedure, 29 

this will represent the degree of sharpness of reduction in amplitude and again do the same jobs as 30 

before and it leads to this, make it more specific. We apply this method on three data sets, first, 31 

Marmousi model and then two other real seismic zero-offset sections. To evaluate the proposed 32 

method compared with the Synchrosqueezing STFT (SSTFT). The results confirm good 33 

performance of MC-STFT in high resolution gas reservoir detection. 34 

 35 
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 37 

1. Introduction 38 

The location of gas reservoirs can be detected taking advantage of its particular criteria in seismic 39 

data. Generally seismic signals are nonstationary as their frequency responses vary with time. 40 

There are some techniques called Time-Frequency Decomposition (TFD) which map a 1D signal 41 

into a 2D plane of time and frequency. In this way the frequency content of the signal with respect 42 

to time can be revealed. So TFD methods used as spectral decomposition in both seismic 43 

processing and interpretation (Reine et al., 2009; Chen et al., 2014). For example, Partyka et al., 44 

(1999) adopted the windowed discrete Fourier transform (DFT) for reservoir characterization. To 45 

detect low frequency shadows beneath hydrocarbon reservoirs, Castagna et al., (2003) applied the 46 

matching-pursuit decomposition. Sinha et al., (2005) proposed a novel method of taking a Fourier 47 

transform of the inverse continuous wavelet transform (CWT) as a time-frequency map to identify 48 

subtle stratigraphic features (Zhang et al., 2019). Wu and Zhou (2018) developed 49 

synchrosqueezing wavelet transform (SWT) to reallocate the wavelet transform values to different 50 

points and produce a sharp spectral decomposition for the input signal (Mateo et al., 2020). Li and 51 

Zheng (2008) took advantage of the smoothed pseudo-Wigner-Ville distribution (SPWVD) for 52 

carbonate reservoir characterization. Zhang and Lu (2010) applied the deconvolutive short-time 53 

Fourier transform (DSTFT) method, which improves the time and frequency resolution of the 54 

STFT spectrogram by 2D deconvolution on seismic spectral decomposition. Liu et al., (2011) 55 

proposed a spectral decomposition method in which time-varying Fourier coefficients are used to 56 

define a time-frequency map (Zhuang et al., 2020).  57 
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Spectral decomposition has been applied in exploration feilds such as hydrocarbon detection, 58 

seismic attenuation analysis, channel identification, and thin-layer thickness estimation (Quan & 59 

Harris 1997, Gao et al. 1999, Liu & Marfurt 2007, Zhou et al. 2019, Odegard et al. 1997). 60 

Conventional spectral decompositions have some restrictions such as Heisenberg uncertainty 61 

principle and cross-terms which limit their applications in signal analysis. In an effort to overcome 62 

some of the limitations, use has been made of the STFT (Siddique et al., 2023; Yang et al., 2019). 63 

Recently, valuable efforts are done to cover these limitations, Barabadi et al., (2024) used 64 

synchroextracting transform for AVO analysis in time frequency and Shirazi et al., (2023) 65 

employed Multi-synchrosqueezing transform to detect shallows gas. 66 

In this article we propose a novel seismic attribute to detect gas reservoirs which is based on STFT 67 

(Cohen, 1989). The superiority of this method relies not only on its simplicity (which doesn’t add 68 

any mathematical burden to STFT method) but also on the high resolution characterization it 69 

provides. This method takes advantage of seismic low frequency shadows as a gas reservoir 70 

indicator.  The novelty behind this algorithm is in seismic signal transformation from time domain 71 

to time-frequency domain using STFT and then extraction of three frequency sections of each 72 

signal. This approach converts seismic zero-offset section into a 2D image of gas reservoir.  73 

We assess the performance of the proposed algorithm against three models including Marmousi 74 

model and other two real data. The results show that the first iteration of this algorithm can locate 75 

gas reservoirs at high resolution which can also be much more accurate by applying the second 76 

iteration in comparison to the method SSTFT.  77 

 78 

2. Theory 79 

2.1. Short Time Fourier Transform (STFT) 80 

This section first deals with STFT formulation used in this study and then STFT-proceeding 81 

algorithm to obtain the final gas reservoir image. 82 

The discrete time STFT method is formulated as  83 

𝑋𝑆𝑇𝐹𝑇[𝑚ˎ 𝜔] = ∑ 𝑥[𝑛]

∞

𝑛=−∞

𝑤[𝑛 −𝑚]𝑒−𝑖𝜔𝑛 (1) 

 84 
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𝑤(𝑚) = 𝑎𝑒
−
(𝑚−𝑏)2

2𝑐2  
                                                              (2) 

 85 

Where 𝑤(𝑚) is the window function (which is Gaussian in this study). In the Gaussian window 𝑎 86 

is the height of the curve’s peak, 𝑏 is the position of the center of the peak and c is the standard 87 

deviation. 𝑚 and 𝜔 are discrete time shift and angular frequency respectively and 𝑥[𝑛] is the 88 

seismic signal.  89 

 90 

2.2. Mixed Components of STFT (MC-STFT) 91 

The STFT of 𝑥[𝑛] can be interpreted as the Fourier transform of the product 𝑥[𝑛]𝑤[𝑛 − 𝑚]. So as 92 

it is clear, in this study there is no changes in STFT formulation. The next step is to extract three 93 

frequency component section from time-frequency domain obtained by applying STFT on each 94 

seismic trace.  95 

 96 

{
 
 

 
  𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 (𝑓) 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝐶1(𝑚ˎ 𝑓1)ˎ      𝑓1 =

𝐹𝑁
10⁄

𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 (𝑓) 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝐶2(𝑚ˎ 𝑓2)ˎ      𝑓2 = 
𝐹𝑁

5⁄

𝑡ℎ𝑒 𝑡ℎ𝑖𝑟𝑑 (𝑓) 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝐶3(𝑚ˎ 𝑓3)ˎ     𝑓3 = 
𝐹𝑁

3⁄

   (3) 

 97 

Where 𝐹𝑁 is the Nyquist frequency of seismic signals. Now these frequency components are 98 

normalized so that the effect of intensity of each frequency will be the same. So they are denoted 99 

by 𝐶1ˎ 𝑁, 𝐶2ˎ 𝑁 and 𝐶3ˎ 𝑁. And the final step is to multiply these component sections as below and 100 

get the final image.  101 

 102 

𝐺(𝑚ˎ 𝑑𝑖) = (𝐶1ˎ𝑁 ∗ 𝐶2ˎ𝑁 ∗ 𝐶3ˎ𝑁)𝑖   (4) 

 103 

Where 𝐺(𝑚ˎ 𝑑𝑖) is the final gas reservoir image and 𝑑𝑖 is the horizontal distance in seismic zero-104 

offset section (i.e. the ith trace). To obtain a more accurate gas reservoir location we can do the 105 

second iteration of this procedure. The first and the second iteration is summarized as below: 106 

 107 
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 The algorithm of the first and second iteration of the method 

 𝑘 = 1,   𝑓𝑖𝑟𝑠𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

1- 𝑥𝑖[𝑛] , 𝑎𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑡𝑟𝑎𝑐𝑒 𝑜𝑓 𝑧𝑒𝑟𝑜 − 𝑜𝑓𝑓𝑠𝑒𝑡 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

2- 𝑋𝑆𝑇𝐹𝑇ˎ 𝑖ˎ 𝑘[𝑚ˎ 𝑓] = 𝑆𝑇𝐹𝑇(𝑥𝑖[𝑛] )  

3- 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝐶1ˎ 𝑁ˎ 𝑘, 𝐶2ˎ 𝑁ˎ 𝑘 𝑎𝑛𝑑 𝐶3ˎ 𝑁ˎ 𝑘 

4- 𝐺𝑘ˎ 𝑖(𝑚) = (𝐶1ˎ 𝑁ˎ 𝑘 ∗ 𝐶2ˎ 𝑁ˎ 𝑘 ∗ 𝐶3ˎ 𝑁ˎ 𝑘)𝑖 

 𝑘 = 2,  𝑠𝑒𝑐𝑜𝑛𝑑 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

5- 𝐺𝑘−1ˎ 𝑖(𝑚),  𝑎𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝑔𝑎𝑠 𝑖𝑚𝑎𝑔𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

6- 𝑋𝑆𝑇𝐹𝑇ˎ 𝑖ˎ 𝑘[𝑝ˎ 𝑓] = 𝑆𝑇𝐹𝑇(𝐺𝑘−1ˎ 𝑖(𝑚)) 

7- 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝐶1ˎ 𝑁ˎ 𝑘, 𝐶2ˎ 𝑁ˎ 𝑘 𝑎𝑛𝑑 𝐶3ˎ 𝑁ˎ 𝑘 

8- 𝐺𝑘ˎ 𝑖(𝑝) = (𝐶1ˎ 𝑁ˎ 𝑘 ∗ 𝐶2ˎ 𝑁ˎ 𝑘 ∗ 𝐶3ˎ 𝑁ˎ 𝑘)𝑖 

 108 

 109 

 110 

2.3. Synchrosqueezing STFT (SSTFT) 111 

The SSTFT is a combination of the STFT and the synchrosqueezing method. The 112 

synchrosqueezing method use to sharpen the STFT map, and therefore, generates a concentrated 113 

time–frequency map named SSTFT (Auger, 2013). 114 

The SSTFT is given by  115 

                                                                                                                                116 

                                                                                                                                                (5)   117 

Where 118 

                  119 

This is the forward transform. The energies of the STFT be squeezed to the instantaneous 120 

frequencies locations according to the equation (5) in order to get a concentrated time–frequency 121 

representation. 122 
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 123 

3. Results and Discussion 124 

In this study we assess the performance of the proposed algorithms (i.e. both first and second 125 

iteration). We do this by three models, first with a real well-known Marmousi model then two 126 

other real models.  127 

 128 

3.1. Marmousi Model 129 

This model is a 3500 m of depth and 17000 m of distance in which there are some gas reservoirs 130 

(figure 1). We picked one of these reservoirs to test out algorithm. As it’s shown in figure 1, there 131 

is a gas reservoir on top left of this geological section (Martin, 2006). So we cropped the original 132 

section, which is the pre-stack depth migration image of the area (figure 2), from 1875 m to 6250 133 

m in distance and from 0 s to 1.37 s in time (figure 2). The cropped section (figure 3) is then used 134 

to apply our algorithm on. The result of applying the first iteration of MC-STFT on this section 135 

leads to locating gas reservoir but there is still an anomaly at water bottom (figure 4a). Other 136 

anomalies but gas reservoir will be attenuated by second iteration (figure 4b). As it is clear from 137 

figure 4b, second iteration eliminates the water bottom effect and just gas reservoir anomaly can 138 

be seen. The result of SSTFT in figure 4c shows good performance of it, however the MC-STFT 139 

confirms the its power to localize gas reservoir zone.  140 

 141 

 142 
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Figure 1. Marmousi model, structural elements, horizons and lithologies.  143 

 144 

 145 

Figure 2. Marmousi zero-offset section (the red box shows the cropped part). 146 

 147 

 148 

Figure 3. Marmousi cropped zero-offset section (the red circle represents the gas reservoir). 149 
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 150 

 151 

152 

Figure 4. a) The first iteration of MC-STFT. Anomaly shows gas reservoir. b) The second iteration of 153 

MC-STFT. c) The result of SSTFT. 154 

 155 

3.2. Real model 1 156 

This model is a zero-offset section with 996 ms of time axis and 1310 m of distance (figure 5). 157 

There is a gas reservoir in this model which is shown by the red circle. The first and second 158 

iteration of the proposed algorithm are applied on this section. The first iteration bolds the gas 159 
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reservoir in such a way that there is an anomaly in gas area (figure 6a). Although there are still 160 

some slight anomalies on other parts of the section, for example on the bottom of the section 161 

another of anomalies can be seen. However, the peak of the amplitudes lies on the gas area. The 162 

second iteration, on the other hand, located the gas reservoir more accurately and increased the 163 

detection resolution (figure 6b).  Figure 6c shows the output of SSTFT, the good performance of 164 

it is clear but not same as second iteration of MC-STFT. 165 

 166 

 167 

Figure 5. zero-offset section in which the gas reservoir is represented by the red circle. 168 
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 169 

Figure 6. a) Gas reservoir anomaly after the first iteration of MC-STFT. b) The section after the second 170 

iteration of MC-STFT. c) The result of SSTFT. 171 

 172 

3.3. Real model 2 173 

This model is a block in the Dutch sector of the North Sea which is a zero-offset section with 1356 174 

ms of time axis and 23.75 km of distance (figure 7). The gas reservoir is located approximately on 175 

the middle right part of the section which is shown by the red circle. The first and second iteration 176 

of MC-STFT are applied on this section. The first iteration is able to distinguish gas reservoir 177 
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accurately enough (figure 8a).  The remaining anomalies which might be misleading in locating 178 

gas reservoir will be considerably vanished by the second iteration of MC_STFT (figure 8b). 179 

Applying result of SSTFT is shown in figure 8c and it succeeded to identify the gas zone with high 180 

resolution.  181 

 182 

 183 

Figure 7. North Sea zero-offset section and the gas target. 184 

 185 

 186 
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 187 

Figure 8. a) The result of applying first iteration of MC-STFT. b) Second iteration output of MC-STFT. c) 188 

The result of SSTFT. 189 

 190 

 191 

STFT offers a compromise between time and frequency resolution, which is controlled by the 192 

window size used during the transformation process. Although STFT provides a constant time 193 

frequency resolution across all frequencies, this can limit its effectiveness in analyzing signals with 194 

rapid transient changes because it cannot adapt its resolution to signal characteristics dynamically. 195 

This investigation has demonstrated that while STFT offers a straightforward and computationally 196 
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efficient approach, it is constrained by a fixed time-frequency resolution trade-off, which may not 197 

adequately capture the intricate dynamics of signals with rapidly varying frequencies. 198 

 199 

4. Conclusion  200 

In this study we employed STFT in an algorithm to detect gas reservoirs from seismic zero-offset 201 

sections. This method adds no complexity to STFT methodology and uses the simple original 202 

STFT. In fact, extracting three components of STFT of the zero-offset section and multiply them 203 

is the key that creates this attribute. Two iterations of this algorithm is proposed so that the first 204 

one distinguishes the gas reservoir with high accuracy from other events. Consequently, the second 205 

iteration increases detection resolution and makes an absolutely precise image. MC-STFT for all 206 

of its potential, seismic data are subject to a wide variety of noise related problems that can and do 207 

limit its usefulness, Therefore, in the first stage, pre-processing is needed.  In addition, the fixed 208 

window size used in STFT can be a significant limitation, as it imposes a trade-off between time 209 

and frequency resolution. Narrow windows give good time but poor frequency resolution, and vice 210 

versa. However, simplicity and efficiency can make a method superior. Results, which tested the 211 

proposed algorithm on three real data, also show that the first iteration of MC-STFT is able to 212 

locate gas reservoirs but with some other weak amplitude anomalies. But taking advantage of the 213 

second iteration of this method considerably increases the accuracy of gas reservoir location. Also 214 

it should be mentioned, the steps and parameters of the designed algorithm could be optimized in 215 

future work to improve its performance for gas reservoir identification. To evaluate the proposed 216 

method, SSTFT is also employed and applied to the data, the outputs show its power to localize 217 

and identify gas zone. Totally, the final results approved more power and higher resolution of MC-218 

STFT in comparison with SSTFT for gas reservoir detection.  219 
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