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Abstract 

The passive image interferometry (PII) approach, which incorporates a cro 

ss-correlation process to reconstruct the green function between two stations, is emerging as an effective 

tool for studying seismic velocity changes. These changes provide significant information about the earth's 

structural and mechanical properties between the stations. Despite its numerous benefits, monitoring fault 

zones with PII can be challenging due to various processes that can cause velocity changes in the crust. In 

this study, we investigated the usefulness of this method on the noise recorded in two seismic stations 

located near the fault zone that caused the Sefid-Sang earthquake with a magnitude of Mw = 6.1. Our study 

covers a period of 15 months, including 12 months before and 3 months after the earthquake. We 

investigated velocity changes across different frequency ranges and examined the effect of stacking on the 

results. Our analysis revealed a 0.3% increase in seismic velocity during the two months before the 

earthquake. 
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This paper is structured as follows: Section 2 discusses the geological and seismic context of the 2017 

Sefid Sang earthquake, including its tectonic setting, fault mechanism, and seismic hazard. Section 3 

outlines the methodology employed in this study, detailing the data collection and analysis techniques 

utilized to monitor seismic velocity changes. Section 4 discusses the significance of these findings in 

the context of existing literature and suggests directions for future research. 

2- Geological and Seismic Context 

2.1 Tectonic Setting of the 2017 Sefid Sang Earthquake 

The 2017 Mw 6.1 Sefid Sang earthquake struck northeastern Iran, a tectonically active region 

located between the Kopetdag Mountains and the Binalud range (Aflaki et al., 2019),(Nedaei & 

Alizadeh, 2020), (Ghayournajarkar & Fukushima, 2020). This area is characterized by complex 

geological structures, significant elevation changes, and a history of notable earthquakes, 

indicating ongoing seismic activity(Aflaki et al., 2019), (Petrova et al., 2022). Northeastern Iran lies 

at the boundary between the Arabian and Eurasian plates, with the Kopetdag Mountains and 



 

 

Binalud range serving as primary deformation belts. The region has a complex geological history 

involving continental collision, subduction, and rifting, contributing to its geological instability. 

(Petrova et al., 2022). 

2.2 Fault Mechanism and Coseismic Displacements 

The Sefid Sang earthquake is associated with a blind reverse fault, with analyses using InSAR data 

providing insights into its fault mechanics and coseismic displacements (Aflaki et al., 2019),(Nedaei 

& Alizadeh, 2020). The InSAR analysis revealed a northeast-dipping fault with a strike angle of 

approximately 314.8° and a dip angle of 47.4°. The maximum observed displacements reached up 

to 14.2 cm. (Nedaei & Alizadeh, 2020).  

2.3 Seismic Hazard and Vulnerability 

Despite the low population density, the Sefid Sang earthquake caused significant damage, 

affecting 40-100% of buildings in several villages and resulting in fatalities. The event highlights 

the vulnerability of northeastern Iran to significant seismic events and underscores the importance 

of monitoring and understanding the region's geological context (Aflaki et al., 2019) (Petrova et al., 

2022). The ongoing tectonic movements in the region, as suggested by the interferogram patterns, 

emphasize the need for detailed monitoring of seismic activity (Nedaei & Alizadeh, 2020). 

The distribution of aftershocks following the earthquake also emphasizes the active tectonics of 

the area and the potential for future seismic events (Petrova et al., 2022). 

 

3. Methodology 

3.1 data collection 

This study utilized continuous ambient noise data from the TBJM and JRKH stations of the 

Mashhad seismological network affiliated with the Iranian Seismological Center of Tehran University 

Geophysics Institute. These stations are equipped with broadband seismometers, which are capable of 

recording a wide range of seismic waves. The sensitivity of broadband sensors allows for the detection 

of low-magnitude earthquakes, making the stations effective in monitoring seismic activity. Broadband 



 

 

seismometers typically have a frequency response that ranges from 0.01 Hz to 100 Hz, allowing them 

to capture both long-period and short-period seismic waves. The dynamic range of broadband sensors 

is generally high, enabling them to record both very weak and very strong seismic signals without 

distortion. These stations operate continuously, transmitting data in real-time to the Iranian 

Seismological Center for analysis and monitoring. The data was collected for a period of 15 months, 

including 12 months before and 3 months after the Sefid-Sang earthquake, with magnitude Mw=6.1. 

The earthquake's epicenter was recorded at 35.85 degrees latitude and 60.34 degrees longitude with a 

depth of 10 kilometers, located between the two observed stations, which were 71 km apart (Figure1). 

3.2 Pre- processing 

Pre-processing involves several systematic steps to prepare waveform data for analysis. Initially, 

pairs of data are split, and a list of stations is created while querying the database to retrieve file paths 

for each station. For each station, all files containing data for a specific day are opened, and the traces 

are merged and split to form the most continuous segments possible. Each segment, or chunk, is 

processed by removing the mean value to center the data around zero (demeaning), applying a tapering 

function to reduce edge effects (tapering), and combining the processed chunks into a single continuous 

trace for the day (merging). If a chunk does not align with the sampling grid, it is phase-shifted in the 

frequency domain, requiring additional tapering and fitting. Small gaps between chunks can be filled 

with interpolated values, while larger gaps may be addressed through modification of the frequency 

content of the existing time series (Nameni et al., 2024). Each daily trace undergoes high-pass filtering 

at a specified frequency and, if necessary, low-pass filtering. The trace is then decimated or 

downsampled, with downsampling allowing for flexible reduction by any factor using the ObsPy 

Lanczos resampler. If configured, the daily trace is corrected for instrument response, supporting 

formats such as dataless seed and inventory XML. The preprocessing routine outputs a Stream object 

containing all processed traces for all stations and components. This systematic approach ensures that 

the waveform data is well-prepared for subsequent analysis, which may include further signal 

processing or interpretation in seismic studies. 

 

3.3 Passive Imaging Technique 

The passive imaging technique employed in this study involves the use of ambient seismic noise to 

monitor changes in seismic velocity. This method allows for the reconstruction of the Green's 



 

 

function between two seismic stations, providing insights into the dynamic response of the Earth's 

crust. 

3.4 Moving Window Cross-Spectral Technique(MWCS) 

The MWCS method was initially presented by Poupinet et al (1984) as a tool for recovering relative 

velocity fluctuations between doublet earthquakes. More recently, Brenguier et al 2008 utilized this 

technique in seismic noise records, where noise cross-correlations were treated analogous to 

doublets. 

The moving window cross-spectral technique is utilized to analyze time-series data obtained by 

correlating noise sequences collected at two separate seismic stations. This technique operates in the 

frequency domain, allowing for the definition of the bandwidth of coherent signals in the correlation 

function. 

In our study, the sensitivity kernel is a key element in understanding the seismic velocity variations 

over time. It is computed using the finite-frequency theory, which considers the wave propagation in 

the Earth's medium as a volumetric process, rather than a simple ray-based approximation. 

Specifically, the sensitivity kernel provides information on how seismic travel times respond to 

velocity changes in different regions, helping to pinpoint the exact locations where stress-related 

changes occur. 

The kernel is calculated by integrating travel time perturbations over the volume of the Earth's 

structure between two seismic stations. This approach is enhanced by the adjoint method (Tape et al., 

2010; Tromp et al., 2005), which allows for backward propagation of the seismic wavefield from the 

receiver to the source. By analyzing the phase shifts in the cross-spectral domain between the 

reference and current functions at different frequencies, the time delay (δt) and relative velocity 

perturbations (δv/v) are determined. The sensitivity kernel is then used to relate these measurements 

to specific layers of the Earth's subsurface. 

However, the kernel calculation involves several assumptions and limitations. It assumes 

homogeneous velocity perturbations across the study volume, which may not account for localized 

changes in complex geological settings. Moreover, the resolution of velocity changes is frequency-

dependent, with lower frequencies penetrating deeper into the Earth but providing less spatial 

resolution. This trade-off affects the interpretation of deeper layers. 



 

 

3.5 Calculation of Time Delay 

The initial phase of the process involves building at least one reference cross-correlation and several 

current cross-correlations. Since the noise records are long and need to be processed computationally, 

they are divided into shorter sequences (for example, one sequence for each day or hour). Several 

cross-correlations are then stacked to create the reference and current functions. These functions are 

defined by the number of stacked cross-correlations, where the reference function (Nref) must be 

significantly larger than the current function (Ncur) to ensure that the reference, ccref, provides a 

background value while the current, cccur,  provides valuable information on the current state of the 

earth's crust. 

For any pair of functions ( ccref and cccur) used as reference and current respectively, a two-step 

technique is employed.  

1. Time Delay Determination: The first step involves determining the time delay between the 

two signals within a set of overlapping windows. 

2. Relative Velocity Variation Calculation: The second step consists of calculating the 

relative velocity variation associated with the current function in comparison to the reference. 

In the second step, for the sake of simplicity, it is assumed that there is a homogeneous perturbation of 

the seismic wave propagation velocity within the studied medium. 

It should be noted that the primary process is conducted in the spectral domain by analyzing the phase 

of the cross-spectrum. This enables the precise selection of the desired frequency band based on the 

coherence between the two windowed cross-correlations. Each measured delay-time corresponds to 

the central point of the window and is determined from the cross-correlation lag-time. Subsequently, 

the second step involves analyzing the trend of the delay-time estimates over the entire length of the 

signals, resulting in the evaluation of the δt/t. The linear regression of the delay-time estimates provides 

a rough indication of the relative homogeneous velocity perturbation between the current cross-

correlation and the reference cross-correlation (James et al. 2017). 

In the MWCS analysis, several critical parameters need to be considered, including the selection of Nref  

and Ncur, the length and overlap of each window, and the total number of windows used in the analysis. 

These parameters are crucial to the initial process and depend on the characteristics of the cross-

correlation functions, such as their length and frequency content, as well as the speed at which the 

signal decays below the noise level. 



 

 

The primary step in the MWCS analysis involves computing the delay-times (δt ) between two cross-

correlation functions within a series of intersecting lag-time windows. Each cross-correlation function 

is partitioned into Nw windows, with each window corresponding to a delay-time measurement. The 

selection of window length, overlap, and Nw will typically be influenced by the frequency 

characteristics and signal-to-noise ratios (SNRs) of the cross-correlation functions in question. The 

cross-spectrum X(v), between the two segmented time-series is then obtained as follows  

 

X(v)=𝐹𝑟𝑒𝑓(ν) . 𝐹𝑐𝑢𝑟
∗  (ν)                   (1) 

 

 Where Fref(ν) and Fcur (ν)   represent the Fourier-transformed versions of the time-series, which have been 

windowed. Here, ν   represents frequency in Hz, and the asterisk indicates complex conjugation. it is more 

appropriate to describe the complex cross-spectrum in terms of its amplitude |X(ν)|  and phase φ(ν) 

X(ν)=|X(ν)|𝑒𝑖𝜙(𝜈)            (2) 

The time-shift between the two cross-correlations can be determined from the (unwrapped) phase 

spectrum, φ(ν), of the cross-spectrum, which exhibits a linear relationship with frequency. 

∅𝑗 = 𝑚 . 𝜈𝑗  𝑚 = 2𝜋𝛿𝑡       (3) 

To calculate the time delay in each window, first determine the frequency range of interest. Then, 

calculate the phase displacement in each frequency for each window. Next, apply linear regression to 

the phase displacements along the frequencies of interest. According to equation (3), the slope of this 

linear regression is the time delay. Repeat this process for all the time series windows. Since the time 

series is a function of time, the time delay obtained for each window can be plotted as a function of 

time. To determine the velocity perturbation dv/v, apply linear regression to the time delays for all 

windows. This time, the slope of the regression represents the velocity perturbation according to 

equation (4)( Clarke et al, 2011). 

𝛿𝑡

𝑡
= −

𝛿𝑣

𝑣
           (4) 

 

 



 

 

 

Figure 1. Geographical location of Mashhad seismic network stations 

3.6 Data Processing 

MSNoise software was employed to calculate velocity changes using the vertical component data as 

software input(Lecocq, Caudron, and Brenguier 2014). In calculating cross-correlation, 24-hour 

continuous data periods were first divided into 30-minute periods, and cross-correlation was then 

calculated for 30-minute waveforms. The resulting correlated functions were linearly stacked for a 24-

hour period, and a waveform was obtained for each day. The first 90 days of the entire study period 

were stacked and considered as the reference function, with current functions resulting from 5, 10, 15, 

and 30-day stacks (Figure 2). 

In the Moving Window Cross-Spectral method, it is often desirable to exclude  ballistic waves from 

the analysis because they do not provide information about the scattering properties of the Earth's 

interior, which is the focus of this method. Instead, the analysis aims to capture the scattered waves 

that arrive later, which carry information about the Earth's structure and velocity changes. By visually 



 

 

inspecting the Green's function, we concluded that elastic waves enter for up to 25 seconds. Therefore, 

for greater certainty, we considered starting the lag from 30 seconds. 

To calculate the time delay, both the causal and non-causal parts of the correlation functions were used 

within the time intervals of 30 to 120 seconds and -30 to -120 seconds. The length of the windows was 

set equal to the length of the largest period in the correlation function, and an 80% overlap was applied 

between the windows. 

The maximum error in the regression line for calculating the time delay is considered to be 0.1 seconds. 

By setting this threshold, you ensure that only data points with relatively high precision (i.e., low error) 

are included in the analysis. This helps maintain the accuracy and reliability of the results by excluding 

highly uncertain data points. 

We considered a minimum value of 0.01 for the maximum stretching coefficient. The stretching parameter 

is determined by finding the factor that maximizes the correlation coefficient between the stretched current 

waveform and the reference waveform. 

 

Equation 5 was implemented to calculate the cross coherence 𝐶(𝑣) between the energy densities of two 

functions, and any values lower than the minimum threshold of 0.65 were excluded from the 

calculations. 

𝐶(𝑐) =
|𝑋(𝑣)̅̅ ̅̅ ̅̅ ̅|

√|𝐹𝑟𝑒𝑓(𝑣)|
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

.|𝐹 𝑐𝑢𝑟(𝑣)|2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
.       (5) 

 

Here, the overlines indicate smoothing. 

 



 

 

 

Figure 2. Current function on reference function to calculate phase difference in specified time windows. 

The phase displacement is calculated for all frequencies. Then, a linear regression is applied to all the measured 

phase displacements. The slope of this regression equals the time delay for the desired window. This process is 

repeated by moving the window across the entire signal and calculating the time delay at each position 

 

 

Figure 3. This plots dt (delay time) against t (time lag). It shows the results from the MWCS step, plus the 

calculated regression lines M0 and M. The errors in the regression lines are also plotted as fainter lines. The time 



 

 

lags used to calculate the regression are shown in blue. M0: Weighted Least Squares (WLS) with Origin Constraint. 

M: WLS with Offset. 

 

 

4. Result and Discussion 

Monitoring processes in damage zones can be a significant challenge due to their unique characteristics. 

These zones tend to have spatially localized structures with low elastic moduli and high rock susceptibility. 

As a result, traditional monitoring techniques may not provide accurate assessments of the processes 

occurring within these zones.) (Hillers et al. 2014, Hillers & Campillo 2016). The evolution of velocity 

related to earthquakes can happen at extremely different scales and amplitudes, which may not be detectable 

through seismic interferometry. As a result, linking these shifts to laboratory experiments can be 

particularly difficult. 

Seismic ambient noise travels as seismic waves through different layers of the earth, resulting in complex 

wave patterns. As these waves encounter various layers, they can be reflected, refracted, and scattered based 

on the physical properties of each layer. By analyzing and measuring these patterns, a better understanding 

of the earth's structure can be obtained.  

The depth of origin of ambient seismic noise can vary depending on the frequency range being analyzed 

and the location of the sensors. In general, low frequency vibrations (below 1 Hz) can penetrate deeper into 

the earth's crust, while higher frequency vibrations have a more shallow depth of origin. However, it is 

important to note that, actual depth of the source of seismic noise can vary based on several factors such as 

the geology of the area and the propagation properties of the medium through which the seismic waves 

travel. 

In this study, we considered the depth of the hypocenter to be 10 km and   at varying depths in order to 

monitor velocity changes leading up to the earthquake. As mentioned earlier, the MWCS method consists 

of two basic steps. In the first step, we calculate the phase displacement for various frequencies and apply 

linear regression to all the phase displacements. The slope of this regression provides us with the time 

delay within that specific window. The frequency range influences the slope of the line. We began with a 

narrow range and progressively expanded to wider ranges. 

To investigate the narrow frequency range at varying depths, it is essential to apply specific bandpass 

filters. In this study, we utilized filters with frequency ranges of 0.2 to 0.4 Hz, 0.4 to 0.6 Hz, 0.6 to 0.8 



 

 

Hz, and 0.8 to 1 Hz. 

The length of the window used to perform calculations was determined based on the specific filter 

applied. Specifically, the length of the window for each frequency band was set to be equal to the 

maximum period associated with that particular bandpass filter. Throughout the entire period, velocity 

fluctuations can be observed in each of the examined narrow range (figure4). As previously mentioned, 

these fluctuations can have different underlying causes. Despite implementing certain strategies such as 

increasing the overlap of windows, using different parts of the signal, and setting a minimum cross 

coherence, no significant deviation related to earthquakes was observed in any of the investigated range. 

The primary reason for these variations is the regression slope applied to the phase displacement. In small 

ranges, the number of data points used for regression is limited. Consequently, the presence of several 

outlier phase displacements can cause significant changes in the regression slope, ultimately leading to 

large fluctuations in the final results. 

 

 

 

 

Figure4.  velocity change for frequency a: 0.8 to 1 Hz, b: 0.6 to 0.8 Hz, c: 0.4 to 0.6 Hz, d: 0.2 to 0.4 Hz. 

 

Identifying the contributing factors towards the alterations of seismic wave velocity is a formidable 

undertaking, as the underlying factors oftentimes interact in a complex manner. These amendments may 



 

 

also exert a profound influence on other factors, either fortifying or diminishing their impact. In volcanic 

regions, for instance, a rise in velocity that can be ascribed to elevated pressure may be counteracted by a 

decrease caused by the presence of hot magma ( Zhiqiang Liu 2022). 

As noise waves repeatedly traverse through various layers, they exhibit a remarkable degree of sensitivity 

toward alterations and magnify even small variations.  Furthermore, the sensitivity of noise waves increases 

with longer distances, making them particularly sensitive to changes occurring in the fault zone. since the 

fault zone covers a wide range of depths and levels, rendering the entire zone vulnerable to changes in stress 

and strain levels, it was deemed necessary to conduct an investigation on wider frequency range so as to 

gain a more comprehensive understanding of these changes. On the other hand, in a wide frequency range, 

the effect of outlier data on regression is reduced. 

During our investigation process, we delved deeper into the wider range by introducing 0.2 to 1 Hz filters. 

The narrow frequency range showed notable fluctuations in velocity change, whereas we found that the 

wider frequency range exhibited smoother velocity change fluctuations. We calculated the difference 

between the initial and final values of the velocity changes from the beginning to the end of the incremental 

process. This calculation was performed for all four stacking groups. We then considered the average value 

of these differences as the velocity change preceding the earthquake. By analyzing the pattern of velocity 

changes, we observed a rising trend of 0.3% over the two months leading up to the earthquake. This 

percentage increase is approximately 0.1% higher than the maximum value that was observed during the 

entire period preceding the earthquake. (figure 5). This observed increase in velocity is comparable to the 

findings of Wegler et al. (2006), who reported an increase in velocity in the fault zone associated with the 

Mw = 6.6 Mid-Niigata earthquake for 1.5 months prior to the event. 

 



 

 

 

Figure 5. velocity change  for frequency 0.2 to 1 Hz. The black line indicates the day of the earthquake. Discernible 

increasing trends in fault zone velocity changes are observable. However, the most significant trend is the last recorded 

increase, which reached its highest value and coincided with a seismic event. We posit that this heightened velocity 

change is influenced by the intensifying effects of the stress field, which interacts with previously existing factors 

such as seasonal variations. 

 

Throughout the entire studied period, there are observable increasing trends in velocity changes. However, 

it is the last recorded increasing trend that is of particular interest, as it experienced its highest value and 

resulted in an earthquake. We believe that this is due to the intensifying effect of the stress field on other 

previously existing factors. By utilizing the method presented in this study, the impacts of individual factors 

can be observed and In the event that a new factor arises to impact previous factors, this effect will manifest 

as deviant behavior from established patterns. 

The accuracy of using this method can depend on the number of days of stacking in the preparation of 

Green's functions. As the number of stack days increases, the ability to access instantaneous changes 

can become limited. This study investigated the effects of using stacks with durations ranging from 5 

to 30 days on the accuracy of velocity change calculations. The results revealed that this range of stack 

days posed challenges in achieving instantaneous changes, leading to reduced accuracy. Nevertheless, 

the approach proved to be useful for identifying trends. An increasing number of stack days made it 

easier to discern trends, enhancing the visibility of the changes. 



 

 

After the earthquake, we anticipated a sudden alteration in the velocity change rate. However, due to 

the implementation of green function stacking, we were unable to acquire instantaneous changes and 

instead found a downward trend in the rate of velocity change over time. Prior research has shown that 

reductions in velocity caused by earthquakes are linked to dynamic changes in stress and strain, rather 

than static changes (e.g., Rubinstein and Beroza 2004; Hobiger et al.  2016; Brenguier et al. 2014) . 

These changes can be attributed to the formation and enlargement of cracks due to intense ground 

shaking (Wu et al. 2009). However, the reduction in velocity changes after the earthquake, which is 

comparable to the results obtained by Ikeda and Tsuji, suggests a similar pattern. In their study, they 

investigated the Mw= 5.9 earthquake in the Nankai subduction zone and documented a clear decrease 

in seismic velocity at the time of the earthquake. 

Visual examination of the Green's function revealed that after the earthquake, larger amplitudes are 

observed throughout the entire length of the signal, whereas before the earthquake, these amplitudes 

were mostly confined to the initial part (figure 6). Earthquakes can create or modify scatterers within 

the Earth's crust, which can increase the complexity of the seismic wavefield. This can result in more 

reverberated signals (coda) and a greater number of peaks in the Green's function, especially at the 

ends, indicating a more complex wave propagation environment.  

We also evaluated the correlation coefficient between the reference function and the current 

functions (figure7). The findings indicated a high correlation coefficient between the reference 

function and the obtained current functions, with an approximate average value of 0.8, before the 

earthquake. However, as soon as the earthquake, the correlation coefficient value began to decline 

and eventually dropped below 0.5. After the earthquake, the movement of the scatterers caused a 

change in ambient noise, as noted by Hadziioannou et al. (2009). Additionally, Successive 

aftershocks alter the shape of the cracks, leading to the acquisition of different green functions. 

Future research directions should focus on refining the MWCS technique to enhance its sensitivity to 

transient changes and exploring the integration of additional data sources, such as geological and 

geophysical measurements, to provide a more comprehensive understanding of the factors 

influencing seismic velocity changes. By contextualizing our findings within existing literature and 

emphasizing their contributions to the field, we aim to advance the understanding of earthquake 

hazards and improve monitoring strategies in fault zones. 

 



 

 

 

Figure 6. Continuous plot of the Green's function resulting from 5-day stacking. The green line 

corresponds to the zero shift in the Green's function, and the blue line indicates the day of the earthquake. 

 

Figure 7. Correlation coefficients between reference and current functions for current functions obtained from 10 to 

30 days stack. 

 



 

 

5. Conclusion 

This study has provided valuable insights into the complexities of monitoring velocity changes in 

seismological research. Our findings reveal that the width of the frequency range significantly influences 

the results, with narrower ranges leading to severe fluctuations that hinder interpretation. In contrast, 

broader frequency ranges yield smoother data, allowing for clearer trends in velocity changes. 

Additionally, the analysis of Green's functions demonstrates that the number of stacking days plays a crucial 

role in the resolution of our findings. While increasing the number of stacking days enhances the clarity of 

velocity trends, but limits the ability to analyze short-term intervals, which is essential for identifying 

specific seismic events. 

Importantly, our results indicate a consistent pattern of increasing velocity in the months leading up to an 

earthquake, peaking just days before the event. This observation suggests a potential link between pre-

fracture states and static factors, highlighting the need for further investigation into these dynamics. Post-

earthquake data revealed a decelerating trend rather than the anticipated abrupt changes, possibly due to the 

stacking effect of pre-earthquake Green's functions. 

Overall, this research underscores the challenges of monitoring velocity changes in the context of ambient 

noise and local geological structures. It emphasizes the need for careful consideration of methodological 

parameters and suggests that further studies could refine our understanding of seismic precursors and their 

implications for earthquake prediction. 
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