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Abstract 
The Different Similarity Transformation (DST) technique (Stavrev, 1997) utilizes a powerful and fully 
automatic tool for depth estimation of a point source through Euler de-convolution. Stavrev (1997) 
showed the results for the magnetic data of simple 2-D sources and aeromagnetic data along profiles. We 
apply the technique for the gravity data of 2-D rectangular models and real gravity data which has not 
been considered by Stavrev (1997). 
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1 INTRODUCTION 
The EULDPH method based on Euler's 
homogeneity of the anomalous fields has been 
defined and applied by Thompson (1982) and 
Reid et al (1990). 

An important advantage of the method is that 
depth estimates can be obtained without any 
information about magnetization or density 
contrast of the source. 

Klingele and Marson, (1991) and Marson and  
Klingele, (1993) used the method for gravity and 
gradiometric data. 

They have shown that the accuracy of  
the results depends on the correct definition  
of structural index, sampling interval,  
decimation factor and moving interval of the 
window. 

These dependencies make the method difficult 
to implement and it is fully subject to the 
interpreter. 

Barbosa et al. (1999) proposed some 
modifications to Euler de-convolution for 
structural index estimation of magnetic data 
through stability analysis. 

Stavrev (1981) expressed the concept of 
similarity transformations. The differences 
between the transformed and the original data 
form differential similarity transformations 
(DSTs). 

Stavrev (1997) used the DST approach for a 
joint optimum estimation of the structural index 
and the coordinates of a one-point source. The 
results of applying DST for magnetic data of 
simple sources and aeromagnetic data were 
presented by Stavrev (1997). 

 

2 DST 
The Euler de-convolution of one-point source 
anomalies using DST is described by Stavrev 
(1997). 

For estimating the coordinates of a point 
source and structural index, the following system 
of normal equations must be solved, 
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where v=x, z, i.e. coordinates of the observation 
points p, K is the number of observation points, 

ccc z,xv =  i.e. coordinates of the window 
central point Oc, and H is a common symbol of 
the functions on which the operator E is 
exercised. 

Ro is the distance vector of the observation 
point to the central point of the window. 

The solution of (1) gives optimal values of the 
coordinates 00 z,x  of the singular point M, the 
structural index N and the coefficients of the 
background trend, 
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The quality and the dispersion of the solution 
can also tested through relevant equations 
(Stavrev, equations (35), (36), 1997), 
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where Qm is the minimum of the object function 
(Stavrev, equations (30), 1997) and reflect the 
quality of the solutions. 

The dispersions of the solutions of system (1) 
are determined by, 
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where iid  are the diagonal elements of the 

inverse matrix of the coefficients ijt  in (1), U is 
the number of unknowns (U=3), K is the number 
of points in the window. 

 
3 NUMERICAL PROCEDURES 
To implement the DST technique for a  
point source anomaly the following procedure is 
applied. 
1. Computing the gravity anomaly of synthetic 

models through Talwani's (1959) method 
along the profile and in definite x points  
or considering a profile passing through  
the center of anomaly in the case of real  
data. 

2. Computing the interpolated values of gravity 
data along the profile, using cubic spline 
method (Press et al., 1986). 

3. Substituting 
z
g
∂
∂

 instead of F in equation (5) 

(Klingele and Marson, 1991) yields, 
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4. Constructing the linear system of equations by 
considering equation (9), 
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where Xop and Zop are the distances of the 
observation points to the window central point in 
x and z directions, respectively. 

Substituting equation (7), (8) and (17) into 
equation (6), the elements of the ijt , (3*3) matrix 
are constructed following equation (2). 



2-D Euler de-convolution through DST of gravity data                                             3 

 

,1j,1iwhen]D[E]D[E 1m1

K

1m
m ==∑

=

 

(20) 

,2j,1iwhen]D[E]D[E 2m1

K

1m
m ==∑

=

 

(21) 

,3j,1iwhen]D[E]D[E 3m1

K

1m
m ==∑

=

 

(22) 

,1j,2iwhen]D[E]D[E 1m2

K

1m
m ==∑

=

 

(23) 

,2j,2iwhen]D[E]D[E 2m2

K

1m
m ==∑

=

(24) 

,3j,2iwhen]D[E]D[E 3m2

K

1m
m ==∑

=

(25) 

,1j,3iwhen]D[E]D[E 1m3

K

1m
m ==∑

=

(26) 

,2j,3iwhen]D[E]D[E 2m3

K

1m
m ==∑

=

(27) 

,3j,3iwhen]D[E]D[E 31m3

K

1m
m ==∑

=

(28) 
Keeping in mind equation (4) for mG  the 

elements of jr  vector are computed through 
equation (3). 

5. Solving the system of normal equations (1) by 
the least-square approach, 

dA)AA(x T1T −=                                         (29) 

where A represent the matrix (equation, 20-28). 

6. Calculating the condition number of AAT  
(Press et al., (1986)) to evaluate the condition 
of this matrix during its inversion. Although 
this number has no application in 
computations. 

7. Computing the quality of the solutions by 
equation (16). 

8. Computing the dispersion of the solutions by 
equation (17). This criterion enables us to 
define an acceptance level for the solutions. 
 

4 SYNTHETIC MODELS 
The DST technique is used for the depth 
estimation of the simple 2-D rectangular models. 
The window size is chosen to be greater than the 
depth of the source under estimation considering 
the recommendation of Stavrev (1997). At this 
step for distinguishing the best factors for 
selecting the suitable results we used noise free 
data without noise. 

The window should include a sufficient 
number of points (more than 7). 

The results of implementing the technique for 
simple rectangular shapes with a contrast density 
equal to 1 g/cm^3 are shown in tables. (1-6). 

Some results are presented in the tables. 

 
 
 
 

Table 1. Win. Size.=12   dec.=1.   dnemo=1.m. 

No Xeuler (m) Depth (m) Con.No. Q 
1 26.36 -1.13 3.15 0.079 
2 26.55 -1.69 3.09 0.038 
3 26.73 -1.99 3.02 0.013 
4 27.62 0.0366 2.92 0.063 
5 30.92 5.94 2.151 0.28 
6 34.86 3.25 0.49 0.19 

 
In this table the depths No. (4), (5) and (6) are positive and could be the right depths. 
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Table 2. Win. Size.=12   dec.=1.   dnemo=1.3m. 

No. Xeuler (m) Depth (m) Con.No. Q 
1 19.23 -4.208 2.97 0.25 
2 19.66 -1.62 2.95 0.018 
3 22.81 6.95 2.91 0.76 
4 28.95 12.3 2.55 1.86 
5 35.39 6.23 0.7 0.94 
6 39.22 -3.58 0.95 0.077 
7 39.16 -6.64 2.52 0.312 
8 38.03 -5.65 3.05 0.76 
9 36.66 -2.82 3.26 1.14 

10 36.97 -1.64 3.3 1.2 
 

In this table the depths No.(3)-(5) are positive and could be the right ones. 
 

Table 3. Win. Size.=12   dec.=1.   dnemo=1.3m. 

No. Xeuler (m) Depth (m) Con.No. Q 
1 22.56 -2.28 3.08 0.6 
2 22.47 -2.83 3.06 0.42 
3 21.99 -3.73 3.0 0.142 
4 22.77 0.9 2.95 0.07 
5 26.99 9.17 2.88 0.73 
6 33.62 10.88 1.195 1.03 
7 39.64 2.168 0.62 0.294 
8 42.2 -5.71 1.04 0.077 
9 41.31 -6.47 2.54 0.425 

10 40.59 -4.61 3.17 0.67 
 

In this table the depths No.(4)-(7) are positive and could be the right ones. 
 

Table 4. Win. Size.=12   dec.=1.   dnemo=0.85m. 

No. Xeuler (m) Depth (m) Con.No. Q 
1 24.57 -1.04 3.12 0.093 
2 23.89 -2.21 3.0 0.093 
3 24.07 -1.77 2.96 0.028 
4 25.23 1.99 2.91 0.0097 
5 28.33 6.6 2.66 0.15 
6 32.03 4.78 0.66 0.48 
7 34.84 -1.34 0.62 0.38 
8 35.31 -3.99 1.4 0.073 
9 35.13 -3.57 2.65 0.028 
10 34.37 -2.1 3.25 0.076 

 
In this table the depths No.(4)-(6) are positive and could be the right ones. 
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Table 5. Win. Size.=12   dec.=1.   dnemo=1.0m. 

No. Xeuler (m) Depth (m) Con. No. Q 
1 33.86 2.96 3.96 1.8 
2 35.74 4.51 2.8 2.008 
3 36.59 19.93 2.7 5.81 
4 32.4 10.75 2.7 1.36 
5 28.23 12.8 2.81 3.57 
6 31.7 15.11 2.81 9.14 
7 35.65 13.6 2.8 11.82 

 
In this table all the depths are positive. 

 
 

Table 6. Win. Size.=12   dec.=1.   dnemo=1.0m. 

No. Xeuler (m) Depth (m) Con.No. Q 
1 24.17 6.5 2.93 0.93 
2 29.93 11.97 2.5 2.24 
3 36.7 6.08 0.6 1.16 
4 40.45 -3.11 0.8 0.122 
5 28.33 6.6 2.66 0.15 
6 32.03 4.78 0.66 0.48 
7 34.84 -1.34 0.62 0.38 
8 35.31 -3.99 1.4 0.073 
9 35.13 -3.57 2.65 0.028 

10 34.37 -2.1 3.25 0.076 
 
 
In this table depths No. (1)-(3), (5) and (6)  
are positive.  In these tables win.size is the 
number of points of the window, dec. is the 
interval between two operator points (decimation 
factor), Con.No. is the condition number of 
matrix, Q is the quality of the solution and  
dnemo is the distance of interpolation of   
original data which have been calculated  
through the Talwani et al. (1959) method and  
5m grid spacing. The admissible standard 
deviation of N is less than |0.25| and according  
to Stavrev (equation (51), 1997) for a  
two-dimensional point source, the structural  
index (N) satisfies the following criterion,  
-0.5 < N < 2.5. 

Considering the positive depths (tables 1-6), 
the depths in the place where Xeuler is the closest 
to the center of the anomaly are the best ones 
(figures 1-6). Other factors like Con. No. and Q 
are not usually useful for selecting the best 
results. 

5 FIELD EXAMPLES 
The set of real data used for testing the DST 
technique were recorded at the Institute of 
Geophysics and at the Institute of Petroleum 
Engineering Department, University of Tehran. 
To recognize and to delimit the subsurface water 
tunnel (ghanat), a microgravity survey based on 
two parallel profiles was measured at the Institute 
of Geophysics. 

A CG3M gravimeter is used to collect the 
data. The station separation of 2 m was chosen. 
The residual anomalies are shown in figure 7 The 
DST technique is applied to estimate the depth of 
the tunnel along one of the main profiles (X=6 m 
and y from 2 to 14 m) and the results are shown in 
table 7. 

In this table the depths No. (1)-(3) are positive 
and number (2) is the closest one  to the center of 
the anomaly. Observing the depth of the ghanat in 
the neighbor well in the area, the depth of the 
tunnel must be something between 3 and 5 
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meters.  
The closest Xeuler to the center of the anomaly is 
plotted in figure 8 which represent the depth very 
accurately. 

Another survey has been conducted on the 
foundation of the Institute of Petroleum 

Engineering Department to detect the probable 
old ghanat or surplus water wells. 

The station separation is again 2 meters. The 
residual anomalies are shown in figure 9. 

The results of DST technique along the profile 
Y=12 m are shown in table 8. 

 
Table 7. Win. Size.=12   dec.=1.   dnemo=0.5m. 

No. Yeuler (m) Depth (m) Con. No. Q 
1 4.64 2.67 1.5 1.5e-7 
2 5.37 4.5 2.9 4.2e-7 
3 5.16 1.9 0.6 3.35e-7 
4 8.68 -2 3.35 5.2e-7 

 
Table 8. Win. Size.=12   dec.=1.   dnemo=0.8m. 

No. Xeuler (m) Depth (m) Con. No. Q 2σ  
1 14.96 2.94 2.4 2.6e-3 1.23e-4 
2 14.13 4.69 0.7 3.47e-3 1.34e-4 
3 13.99 5.08 0.9 3.31e-3 1.26e-4 
4 13.72 4.6 1.06 3.44e-3 2.3e-4 
5 13.04 2.6 0.6 2.42e-3 1.5e-4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. (a) The gravity effect of the block. (b) The rectangular block and DST source points X=25-40 meters, Z=5-10 

meters. 
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Figure 2. (a) The gravity effect of the block. (b) The rectangular block and DST source points X=25-35 meters, Z=10-20  

meters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. (a) The gravity effect of the block. (b) The rectangular block and DST source points X=25-40 meters, Z=10-15 

meters. 
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Figure 4. (a) The gravity effect of the block. (b) The rectangular block and DST source points X=25-35 meters, Z=5-10 
meters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. (a) The gravity effect of the block. (b) The rectangular block and DST source points X=25-40 meters, Z=5-15 

meters. 
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Figure 6. (a) The gravity effect of the block. (b) The rectangular block and DST source points X=25-40 meters, Z=10-20 

meters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
` 
 
 
 
 
 
 

Figure 7. The residual anomaly map (mGal). 
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Figure 8. (a) The residual gravity anomaly along the first profile. (b) The DST point sources. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. The residual anomaly map (mGal). 
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Figure 10. (a) The residual gravity anomaly along the second profile. (b) The DST point sources. 
 
 

In this table all the depths are positive. 
Number (5) has the smallest value of Con. No. 
and Q but is not close to the center of the 
anomaly. Based on our experience in synthetic 
models No. (1) which is the closest point to the 
center of the anomaly could be the result if 
although its Con. No. is the largest. The depth of 
upper surface of the surplus water well is also 
determined after excavation about 2.5 meters. 

The closest Xeuler to the center of the 
anomaly is plotted in figure 10. 
 
4 CONCLUSIONS 
The DST technique is quite effective and flexible 
for estimating the depth of gravity sources. The 
automatic determination of the structural index is 
a main advantage. 

Meanwhile different shapes of the sources  
and decimation factors or position of the windows 
do not affect the results. Inspecting the solutions, 
a small number of them are acceptable that 
decrease the role of the interpreter's judgment. 
However, the technique gives relatively precise 
results in the middle of the anomaly where  

the anomaly peaks. In the case of the complex 
anomalies only the depth under the highest  
peak of the anomalies is accurate. Some  
criteria for the accuracy of the solution defined  
by Stavrov (1997) such as dispersion 
$(\sigma^{2})$, object function $(Q)$ or 
condition umber are not so useful for highlighting 
the best solution.  
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