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Abstract 
The method of Artificial Neural Network is used as a suitable tool for intelligent 
interpretation of gravity data in this paper. 

We have designed a Hopfield Neural Network to estimate the gravity source depth. 
The designed network was tested by both synthetic and real data. As real data, this 
Artificial Neural Network was used to estimate the depth of a Qanat (an underground 
channel) located at north entrance of the Institute of Geophysics and the result was very 
near to the real value of the depth. 
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  چكيده
يك شبكه عصبي هاپفيلد براي  .در اين مقاله روش شبكه عصبي هاپفيلد براي تفسير هوشمند داده هاي گراني استفاده شده است

  .عي و واقعي آزمايش شده انداين شبكه طراحي شده براي داده هاي مصنو .ن عمق چشمه گراني طراحي شده استتخمي
ي اين شبكه براي تخمين عمق يك تونل قنات واقع در موسسه ژئوفيزيك به كار برده شده و نتايج حاصله عدر مورد داده هاي واق

  .ي عمق بسيار نزديك استعبه مقادير واق
  

  شبكه عصبي، گراني، تخمين عمق، هاپفيلد :هاي كليدي واژه
 
1    INTRODUCTION 
Neural Networks are being increasingly used 
in prediction, estimation, and optimization 
problems. Neural networks have gained 
popularity in geophysics in the last decade 
(Gret and Klingele, 2000). 

They have been applied successfully to a 
variety of problems in geophysics. Nowadays 
Neural Networks can be applied in microchip 
technology for computer hardware. 

Neural networks have been applied in 
interpreting well logs (Huang et al.,1996), 

recognizing seismic waveforms (Ashida, 
1996) and automatic detection of buried 
utilities and solid objects from GPR data (Al-
Nuaimy et al.,2000). In addition, applications 
to the interpretation of magnetic data have 
been reported. In these applications, the back 
propagation network was used for structural 
interpretation of aeromagnetic data (Pearson 
et al.,1990), classification of buried objects 
from their magnetic signatures (Brown, et 
al.,1995) and more recently detection of 
tunnels from gravity data (Salem et al.2001). 
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Recent developments in gravity 
measurements and especially in microgravity 
tools have been prepaid an excellence 
condition of data acquisition to have better 
interpretation results depth estimation of 
gravity sources. 

These developments, combined with 
higher speed data acquisition technology, 
have made it possible to detect much smaller 
objects like small cavities, chromites lenses, 
etc. 

The gravity data sets are naturally noisy 
so that it is very hard to estimate the gravity 
source depths precisely.Therefore, there is an 
increasingly need for a fully automatic 
interpretation that can be used to make 
decisions regarding the nature of the source 
in near real time. The massively parallel 
processing advantage of Artificial Neural 
Networks makes them suitable for hardware 
implementation; therefore, detection of 
gravity sources objects will be possible more 
precise. 

The interpretation of gravity data depends 
greatly on the experience of the interpreter 
and there is an increasing need for intelligent 
interpretation techniques that can be used to 
make rapid decisions. Especially it is very 
important to especially mention that some 
techniques like the Euler method, Analytical 
signal, Up-ward Continuation and Down-
ward Continuation are very sensitive to noise 
and can estimate only the edges or around the 
gravity source location.Therefore, a 
technique not very sensitive to noise and 
more precise is needed for depth estimation 
of gravity anomalies. 

One such technique may be found in the 
emerging field of Artificial Neural Networks. 

In this paper, we have developed a new 
method for detection and depth estimation of 
gravity anomalies using the Hopfield Neural 
Network applied to gravity data. The 
Hopfield networks have already been 
electrically and electro-optically 
implemented in a package as a chip which 
can be used in future generations of 
gravimeters instrumentations. 

 
2    ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks are part of a much 
wider field called artificial intelligence, 
which can be defined as the study of material 
facilities through the use of computational 
models (Charniak and 
McDermott.1985).They encompass computer 
algorithms that solve several types of 
problems. The problems include 
classification, parameter estimation, 
parameter prediction, pattern recognition, 
completion, association, filtering, and 
optimization (Brown and Poulton, 1996). 

There are several types of artificial neural 
networks. For complete information covering 
the whole domain of neural networks kinds, 
the reader is referred to the excellence book 
of Fundamentals of Artificial Neural 
Networks by Menhaj (2000). 

Summarizing their reviews, neural 
networks can be divided into two  
main categories: supervised feed-forward 
networks and unsupervised recurrent 
networks. In the supervised feed-forward, 
information is only allowed to flow  
in one direction without any feedback.  
These nets are supervised because using  
a set of correct input-output pairs, called  
the training set; small changes in the 
connection weight are made in order to 
minimize the difference between the actual 
and the desired output values in a distributed 
way. Back propagation is the most popular 
supervised feed forward network. In the 
supervised recurrent type the network allows 
information to flow in either direction. These 
models are called unsupervised and useful in 
optimization applications where a certain cost 
function should be minimized. One should 
merely choose a neural network whose 
energy function coincides with the given cost 
function. A Hopfield model is the most 
popular unsupervised recurrent network. 
Farhat and Bai (1989) and Kulkarni (1991) 
have used the Hopfield network to solve 
some general ill-posed problems. In 
geophysical applications ,Wang and Mendel 
(1992) employed it in seismic deconvolution 
while Zhang and Paulson (1997) used this net 
to invert magnetotelluric data. 

An application of neural network in 
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gravity is in its early stages. In the future we 
hope to develop a more flexible intelligent 
method for gravity interpretations with 
applying other methods in addition neural 
networks like Fuzzy Logic, Genetic 
Algorithms, specially to develop a near-real-
time processing system. 

In this paper, we used the unsupervised 
recurrent Hopfield neural network. 

 
3    HOPFIELD NETWORK 
The Hopfield model is a single layer 
feedback neural network. It means that the 
flow of data is not only from one direction 
and this network incorporates feedback into 
the neuron from all neurons except itself. 

On the other hand, in this type of neural 
network the neurons are all connected to each 
other and the weights of the forward 
connections are the same as their reverse 
connection, so the data entered in the 
network have the effects on all of the neurons 
available. The weight of the neuron 
connections is fixed and can be calculated by 
Hopfield methodology. As it has been shown 
in the figure (FIG.1)it is a 4-neuron Hopfield 
network diagram. The sum square error of 
the Hopfield network output is the energy 
function which must be minimized to get the 
best results. 

So in the Hopfield network we have an 
energy function which may be defined as: 

 

E(v)= - 
1
2 1 1 1= ≠ = =

−∑ ∑ ∑n n n

i j i i
WijViVj IiV i   

 

(1) 
 

Where: 
E(v):The energy function of Hopfield 
network 
n: total number of neurons 
Wij: The weight of connection from neuron i 
to neuron j 
Vi:the i element of input vector V 
Vj: the j element of input vector V 
Ii:the I’th input also known as threshold 

It has been shown that if weight Wij is the 
symmetric matrix, the energy function  E(v) 
will never increase as the state of the 
neurons(V1,V2,…,Vn) change (Hopfield , 
1984; Hopfield and Tank, 1985; Tank and 
Hopfield,1986). This means that the network 
will converge to a state at which the energy 
function E(v) is locally minimized (Wang 
and Mendel, 1992). Accordingly, the 
Hopfield network can invert any set of 
measured geophysical data to another set of 
model parameters if a cost function can be 
formulated between the measured data and 
those theoretically calculated based on the 
model parameters The Hopfield network can 
be used in geophysical applications 
analogous to the conventional inversion 
techniques such as least squares method. 
However, inversion of geophysical data in 
general is not a simple task. The main 
fundamental difficulties are the problem of 
no uniqueness and instability in the solutions 
(Li and Oldenberg, 1996).In this work, the 
Hopfield network is not charged to do a 
classical inversion of gravity data. We have 
taken a simple approach but it may be 
convenient to real time detection. 

 

 
Figure 1. A 4-neuron Hopfield Neural Network diagram.  
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The Hopfield neural network has proven 
to be powerful for solving a wide variety of 
optimization problems (Hopfield and Tank, 
1985, Tank and Hopfierls, 1986).The key 
step in applying the Hopfield neural network 
to an optimization problem is to relate a 
suitable cost function of the optimization 
problem to the Hopfield energy function. 
Once this relationship is formulated, the 
network changes from its initial state to final 
state. The final state constitutes the solution 
of the problem where the energy function is 
minimized.  

In this work, we follow the error function 
as the energy cost function which should be 
minimized. 
 
4    DEPTH ESTIMATION OF GRAVITY 
ANOMALIES 
The general gravity effect at an observation 
point(x,z=0)caused by simple body models 
like sphere and horizontal cylinder at x=0 
and buried at a depth of z(Fig.2) is given by 
equation 2 
(Abdelrahman et al., 2001) 

g= 2 2( )+ qx z

A
                                                   (2) 

  

  
Figure 2. Geometrical specifications of a simple body 

model.  
 

Where q is a value characterizing the 
nature of the object: 
a)If the object is a horizontal cylinder mode l: 
q=1 
b) If the object is a spherical model: q=1.5 

And A is the amplitude factor 
It is a good estimation for some objects 

near to spherical or cylindrical shape that the 
value of q is in the range of 1 to 1.5. It is 
clear from equation(2), that the horizontal 
location of the object can be estimated from 
the Bouger anomalies contours and residual 
anomalies contours. For example as shown in 
figure (Fig.3) it is very clear from the 
intensity of the colors of the Bouger contours 
where the horizontal location of the object is.

 

 
Figure 3. Bouger anomaly map. 
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Suppose we have M gravity data 
measured over an object of unknown 
amplitude factor A and which is located at 
the position (l) .To estimate the unknown 
amplitude factor, we build a cost function 
between the measured and calculated gravity 
anomaly of the model .The theoretical gravity 
anomaly at a measured point k can be 
written: 
 

c
k lkg G A=                                                      (3) 

Where A is the amplitude factor and lkG  
represents the geometrical relation between 
the position (l) and the observation point k. 

There is a problem here that if we have 
the noisy data, how can the amplitude factor 
be calculated? This can be approximated in a 
least square method by a solution that 
minimizes a cost function between the 
measured and calculated data. We define a 
cost function C in terms of the some squares 
of the differences between the measured and 
calculated data (Salem,et al, 2001): 

C= 2 2

1 1

1 1
( ) [ ]

2 2= =
− = −∑ ∑M Mc

k k k lkk k
g g g G A      

   (4) 

Where kg  represents the measured 
gravity data. The amplitude factor A must be 
represented in a system consistent with the 
output of the Hopfield network, where a 
typical bit can be 1 or 0.Referring to binary 
digits rules the amplitude factor can be 
expressed as: 

1
1

1
2

n D U
i D

i
i

A b
= + +

− −

=

= ∑                                      (5) 

Where D is the number of down bits of 
the binary value and U is the number of its up 
bits and b is a binary digit (0 or 1). It is clear 
that D and U depend on the precision and 
amplitude, respectively. 

Substituting equation (5) into equation 
(4), expanding, and regrouping gives the 
connection weight and input initial values as 
mentioned below. 

( 2 2) 2

1

2 ( )+ − −

=

= −∑
M

i j D

lij lk
k

W G                               (6) 

( 2 2) 2 ( 1)

1 1

1
(2 ) 2

2
+ − − − −

= =

= +∑ ∑
M M

i j D i D

ij LK i lk k
k k

I G b G g  

(7) 
 

So the Hopfield energy to estimate the 
amplitude factor at location (l) becomes: 

1 1 1

1
( )

2 = ≠ = =

= − −∑ ∑ ∑
n n n

l ij j i li i
i j i i

E b W b b I b               (8) 

We selected 9 neurons for the Hopfield 
neural network because the accuracy of 
gravity data was 1μ Gal and so 9 bits are 
needed to present the amplitude factor of 
gravity value in binary digits.(As mentioned 
before the binary value of the amplitude 
factor of gravity data consists of D+U+1 
digits, refer to equation (5). 
We applied different values of depth (Z) and 
calculated for each of them the amplitude 
factor by the Hopfield network and the final 
minimized cost function of that Hopfield 
value was obtained for them. 
The depth value in which the cost function 
has the minimum value is the nearest value to 
the real depth of the gravity source. 
 
5   SYNTHETIC DATA AND THE 
HOPFIELD NETWORK ESTIMATION 
IN PRACTICAL CASES 
After calculating the weights and biasing 
values of the network it rotates while getting 
to a stable condition, it means that after 
calculating the weights and biasing values 
they will be fixed but the initial value of 
depth will be applied to the rotating network 
until a condition is reached where its output 
is the same as the previous output; in this 
state it is said that the energy of the neural 
network has reached its minimum. It is 
similar to a ball which runs along a 
topographic area with valise and tops then it 
will be stopped in one of the valise which has 
the minimum depth. So we prepared a 
Hopfield neural network program that tested 
it for different initial values of depth and then 
this program calculates the energy of the 
network in its stable state. The output of the 
network which has the least energy means the 
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depth estimation which is near to the actual 
depth of the source. 

To test the behavior of the network we fed 
the noisy data of a cylinder where the ratio of 
signal to noise was 5%, 10%.After the 
network became stable, the depth was 
estimated by the program mentioned before. 
The results for this test have been presented 
in Table 1. 

As the results show, the network has a 
good ability to detect the near surface object 
in the presence of other noises like heavy 
buildings and tunnels or cavities which may 
be affecting the object near to it. This is a 
very hard task to distinguish the coefficients 
of a suitable filter to attenuate the effects of 
the noise on the main signal but fortunately 

the artificial neural network is less sensitive 
to noise. 

As it has been shown in Table1,  
the network was tested for synthetic  
gravity data of cylinder and sphere  
models in the presence of noise  
and the values of depth(Z)and amplitude 
factor (A) were caculated.It is clear from the 
table that depth estimation in the presence of 
10% noise is near to its training value. 

As real data we tested the network for the 
gravity data measured on the surface of the 
ground on top of a subterranean canal 
(Qanat) at the north entrance of the Institute 
of Geophysics. We first selected a principle 
profile data from the gravity network profiles 
(Fig4).  

 
Table1. Outputs of Hopfield Neural Network in presence of 10% noise. 

 

outputs of MLP(3,5,2) in presence of 10% noise Training values  for R,Z 

Sphere  or Vertical  
cylinder Horizontal cylinder Sphere  or Vertical  

cylinder Horizontal     cylinder 

Z(m) R(m) Z(m) R(m) Z(m) R(m) 

2.22 1.12 2.25 1.17 2 1 

3.45 1.08 3.46 1.22 3 1 

4.25 2.09 4.23 2.15 4 2 

4.28 2.14 5.33 2.18 5 2 

6.53 3.17 6.45 3.25 6 3 

8.76 4.28 8.43 4.17 8 4 

13.45 5.30 13..85 5.65 13 5 

13.40 6.31 14.18 6.25 14 6 

14.65 6.35 16 6.25 15 6 
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Figure 4. Flowchart of selecting principle profile data. 

 

 
The principal profile data is a profile 

which is perpendicular to the extension of the 
anomaly. So we selected the profiles shown 
in figure 5(lines A and B). 

In the next stage the simple body of 
sphere or Cylinder was assumed and the 
values of G and gk (in equations 6,7) were 

extracted from the principle profile data. 
Then the weights Wij and thresholds Iij are 
calculated via equations 6&7 to minimize the 
energy function. Then different random 
initial values of amplitude factor (A in 
equation 2) will apply to the Hopfield 
network . 

 
Figure 5. The principle profiles selected for the real data. 
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As the accuracy of gravity data was 
1μ Gal ;9 bits are needed to present the 
amplitude factor of gravity value in binary 
digits So we used the 9-neuron Hopfield 
neural network .The network turned until the 
new output was equal to the last stage. In this 
condition the network reaches its stable state 
that means the energy function is minimized. 
The energy function for each initial value is 
calculated using equation 1 and the output of 
the network which has the minimum energy 
function is the real amplitude factor. 
Following the mentioned stages above the 
result from the Hopfield neural network was 
2.5 meter for profile A and 9.5 meter for 
profile B, compared to the real depths which 
were respectively  2.9 meter and 9.25 meter; 
this method presented good accuracy of 
depth estimation. 

 
6    CONCLUSIONS 
It this paper a new method has been proposed 
for intelligent interpretation of gravity data 
for exploration, especially in depth 
estimations. The observed gravity anomaly of 
the object is assumed to be produced by an 
equivalent source of cylinder or sphere, 
which has an amplitude factor related to the 
radius, density contrast and depth. We used 
the Hopfield neural network to optimize the 
amplitude factor of the source at a set of 
subsurface targets. For each target location 
the network was run and its stable energy 
was calculated and after that the one which 
has the minimum energy in its stable state 
was supposed as the nearest value to actual 
location and depth. Also we tested the 
network for synthetic data of the two models 
of sphere and cylinder in the presence of 
noise and saw the results have good adaption 
to actual values. For a testing of field data we 
measured the gravity points of the ground on 
top of a subterranean canal and fed the 
corrected data, after pre-filtering, to the 
network .The depth estimation by the 
network (2.5 meter) was very near to the real 
value of the depth (2.9meter). 

In the future we will try to develop this 
method for higher noisy signals especially in 
a fuzzy logic methodology joined to genetic 

algorithm to have access for other 
complicated shapes of objects. 
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