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Abstract 

Gravity acceleration data have grand pursuit for marine applications. Due to 
environmental effects, marine gravity observations always hold a high noise level. In this 
paper, we propose an approach to produce marine gravity data using satellite altimetry, 
high-resolution geopotential models and harmonic splines. On the one hand, harmonic 
spline functions have great capability for local gravity field modeling. On the other hand, 
the information from satellite altimetry is a viable source of information for the marine 
gravimetry in the high-frequency gravity field modeling. Marine geoid from satellite 
altimetry observations can be converted to disturbing potential via ellipsoidal Bruns’s 
formula. The reference gravity field’s contribution is removed and restored after solving 
Dirichlet Boundary Value Problem. Finally, the results are downward continued to the sea 
surface using free air scheme. Computation of gravity acceleration in the Persian Gulf and 
its compatibility with the shipborne data shows reasonable performance of this 
methodology. 
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1    Introduction 
The Earth’s gravity field modeling in marine 
regions for geoid determination, prospecting 
and exploration with high accuracy is the 
main goal among researchers in geodesy and 
geophysics community. Due to 
environmental disturbance and fluctuations in 
the ship movement, shipborne gravimetry 
observations are usually highly noisy. 
Moreover, because of the vast area of the 
oceans and water bodies and slow rate of data 
collection due to low velocities of ships, it is 
nearly impossible to have concurrent 
measurements. It is also economically 
impossible mission to provide a 
homogeneous global coverage of marine 
data. 

Satellite altimetry has provided a new 
source of information for marine geoid 
determination over the sea areas. It should be 

noted that satellite altimetry provides 
accurate measurements on the order of 
centimeter, reducing to the order of 
decimeter in coastal areas (Anzenhofer et al., 
1999). Such accuracy in the geometric space 
is equivalent to the order of microgal in the 
gravity space (Safari et al., 2005). Therefore, 
one can see altimetry data as relatively 
accurate source of information for gravity 
field applications.  

The geodetic community has widely 
studied the gravity field determination via 
satellite altimetry data. The interested reader 
can find valuable contributions from 
Andersen and Knudsen (1998), Hwang 
(1998), Tzivos and Forsberg (1998), Hwang 
et al. (1998), Andersen and Knudsen (2000), 
Hwang et al. (2002), and Sandwell and Smith 
(2009). Nearly all of the above researchers 
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have employed Stokes, Hotine or Vening 
Meinesz integrals to produce gravity field 
functionals from the geoid undulations 
measured by satellite altimetry. 

In this paper, we introduce a method for 
determine gravity acceleration at the sea 
surface based on satellite altimetry 
observations and harmonic splines. In 
contrast to previous methods, geoid 
undulation from satellite altimetry data is 
used for computation of disturbing potential 
via ellipsoidal Bruns’s formula (Ardalan and 
Grafarend, 2001; Safari et al, 2005). 
Disturbing potential is the difference between 
actual gravity potential of the real Earth and 
that of the normal gravity potential at the 
evaluation point (Ardalan and Grafarend, 
2004). With knowledge of geoid potential, 
��  (Bursa et al, 2007), which is equal to 
normal potential at the surface of the 
reference ellipsoid (Safari, 2012), disturbing 
potential is used to compute the actual 
gravity potential of the Earth at the surface of 
the reference ellipsoid. Actual potential at the 
surface of the reference ellipsoid can be 
divided into two parts: (1) reference part, i.e., 
effect of the reference gravity field; and (2) 
residual potential. In order to achieve 
residual potential, one can remove the effect 
of the reference gravity field of the actual 
potential. The reference gravity field consists 
of three parts: a) the modeled gravitational 
field, from ellipsoidal harmonics expansion 
of the external gravitational field up to 
degree and order 240, b) ellipsoidal 
centrifugal field, and c) the effect of sea 
masses outside the reference ellipsoid 
surface. 

Residual potential satisfies the Laplace 
differential equation in the outer space of the 
reference ellipsoid; thus holding only for 
harmonic quantities. In order to solve the 
Dirichlet Boundary Value Problem (BVP) 
(main step in applied method to produce 
gravity acceleration), harmonic splines 
interpolation described by Freeden (1987) is 
applied. For further details we refer to 
Freeden (1981, 1987, and 1990) and Freeden 
and Michel (2004). 

After solving Dirichlet BVP, a specific 

solution to the Laplace differential equation 
in the ellipsoidal coordinate system, we can 
apply any linear operator to express other 
gravity quantities such as gravity 
acceleration. 

The main steps of the proposed method 
are shown algorithmically in Figure 1. 

This paper is organized as follows: 
Section 2 describes discrete exterior Dirichlet 
problem and its solution based on harmonic 
splines. Application of the harmonic splines 
for production of gravity acceleration at the 
sea surface is presented in Section 3, 
followed by numerical evaluation of the 
applied technique at the Persian Gulf. 
Conclusions will be presented in Section 4. 
 
2    Discrete Exterior Dirichlet problem for 
the residual potential 
After removing the effect of reference gravity 
field from actual potential, we obtain residual 
potential �� at the surface of the reference 
ellipsoid ∑ , boundary of problem as a 
smoothed regular surface. The residual 
potential satisfies the Laplace equation in the 
outer space of the reference ellipsoid. 

The traditional approach for the gravity 
field modeling is to use the spherical 
harmonics as the base functions. The most 
significant weakness of the traditional 
method is that the harmonics have a global 
support and cannot be localized in the space 
domain, while these functions have ideal 
localization properties in frequency domain 
(Sneeuw, 2006). For local gravity modeling, 
we need spaces with base functions having 
ideal localization properties in space and 
frequency domains. According to the 
uncertainty principle, however, the ideal 
localization in both space and frequency 
domains is not possible. Increasing the 
localization in the space domain decreases 
the localization in the frequency domain and 
vice versa. This problem can be solved using 
a group of spherical kernels. These kernels 
have high capabilities in the high-frequency 
gravity field modeling. In recent years, 
spherical splines and spherical wavelets have 
been of great interest in the local gravity field 
modeling (Freeden and Michel, 2004). 
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Having an ideal localization in the space 
domain, harmonic spline interpolation 
(Freeden, 1987) can be used to solve the 

Dirichlet BVP. The data points  ���, �(��)� ∈
∑  × ℝ, � = 1, … , �  correspond to a set of 
discrete points on ∑  (Freeden and Michel, 
2004). Residual potential ���

�(�)  is 
estimated in the external space of the 
reference ellipsoid as follows (Freeden, 
1987): 

���
�(�) = � ��(��, �)��  ,   � ∈ ∑���

�

���

  (1) 

where the unique coefficients ��, … , �� 
satisfy the linear system of observation 
equations in the following form: 

� �����, �����

�

���

= �����  , �= 1, … , � (2) 

where �����, ��� is reproducing kernel in 

Hilbert space (H) and linearly independent 
functions  ��(��, .),…, ��(��, .) are called 
Harmonic Splines in H relative to system 
{��, … , ��}. (Freeden and Michel, 2004). 
Table 1 shows some examples of such 
kernels. Due to high capability of the 
Poisson’s kernel in the spatial localization 
(Glockner, 2002), we have applied this 
kernel. ���

�(�) is an approximation of the 
residual potential ��  at points over and 
outside the surface of the reference ellipsoid, 
and it is a member of the function space of 
the regular harmonic functions outside the 
Bjerhammer sphere with radius � (Klees et. 
al., 2008). 

If the quantities �(��), … , �(��)  are  

affected with errors, the interpolation should 
be replaced by the smoothing (Freeden, 
1981; Freeden, 1999; Moritz, 1980; Wahba, 
1990). The coefficients �  are uniquely 
determined by the following linear system: 

(�� + λI)� = � ,          � = (��, … , ��) 
(3) 

where λ is a positive constant  and is the 
optimal smoothing parameter to convert the 
interpolated splines into smoothing splines 
(Freeden, 1981 ; Freeden, 1987 ; Freeden, 
1999). �� is positive definite, hence, �� + λI 
is positive definite too, and the above system 
is uniquely solvable. 
 
3    A case study: validity control of gravity 
acceleration in the Persian Gulf 
In this section, we present an application of 
the method to produce gravity acceleration in 
the Persian Gulf (the study area: 47 ≤ � ≤
57 , 23 ≤ � ≤ 31). This method has not been 
used previously in Iran. Figure 2 illustrates 
the plot of mean sea level (MSL) variations 
computed based on CSRMSS95 satellite 
altimetry model (Kim et al., 1995) over the 
test area. The POCM-4B model has been 
used here to calculate the Sea Surface 
Topography (SST). This model has been 
verified from daily observations of the wind 
stress field and monthly observations of the 
mean sea surface heat fluxes from 1987 to 
1994 (Stammer et al., 1996), and is provided 
in terms of the coefficients complete to 
degree 360 of spherical harmonics (Rapp, 
1998). The SST variations at the study area 
using the data from this model are displayed 
in figure 3. 
 

Table 1. Analytical expressions for some reproducing kernels (Freeden and Michel, 2004). 

 

Abel-Poisson                                                 � � (�, �) =
�

��

|�|�|�|�� ��

�|�|�|�|�� �(�.�)��� ���
�
�

 

 

Singularity                                                   � � (�, �) =
�

��

�

�|�|�|�|�� �(�.�)��� ���
�
�

 

 

Logarithmic                                               � � (�, �) =
�

�� �� ���� +
���

�|�|�|�|�� �(�.�)��� ���
�
�� |�||�|� ��
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Figure 1. Flowchart of the proposed method. 

 

 

Figure 2. Mean sea level spatial variations (in meters) over the Persian Gulf based on satellite-altimetry observations. 
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Figure 3. Spatial variations of sea surface topography over the Persian Gulf (in meters). 

 
Figurer 4 shows variations of the geoid 

height from the reference ellipsoid in the 
Somigliana-Pizzetti field (WGD2000 
ellipsoid) over the region using satellite-
altimetry data. 

The marine geoid computed based on 
satellite altimetry data converted to 
disturbing potential via the ellipsoidal Bruns 
formula. Variations of disturbing potential at  

the surface of the reference ellipsoid over the 
Persian Gulf are plotted in Figure 5. 

Actual potential �  at the surface of the 
reference ellipsoid is obtained by adding 
geoid potential ��  to disturbing potential 
from the ellipsoidal Bruns formula (Bursa et 
al., 2007). Figure 6 shows the variations in 
the true gravity potential values over the 
Persian Gulf. 

 

 

Figure 4. Geoid variations over the Persian Gulf (in meters). 
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Figure 5. Disturbing potential over the Persian Gulf (� �/��). 

 
In figure 8, we plotted variations  

of the residual potential after removal  
of the effect of the reference gravity field 
from the actual potential at the surface of the 
reference ellipsoid in the test area (Figure 7). 
The reference gravity field is a model 
presented by an ellipsoidal harmonic 
expansion of gravitational potential up to 
degree/order 240/240 plus the ellipsoidal 

centrifugal field. At the remove and  
restore steps, the EIGEN-GL04C 
geopotential model (Forste et al., 2005) was 
used as the reference gravitational field. The 
spherical harmonic coefficients of the 
EIGEN-GL04C model were transformed into 
the ellipsoidal harmonic coefficients using 
the exact transformation relation of Jekeli 
(1988). 

 

 

Figure 6. Variations in true gravity potential at the surface of the reference ellipsoid (� �/��). 
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Figure 7. The effect of the reference field as the ellipsoidal harmonic series expansion to the degree and order of 240 
together with the centrifugal field (� �/��). 

 

 

Figure 8. The residual potential over the Persian Gulf (� �/��). 

 
Residual potential satisfies the Laplace 

equation in the outer space of the boundary. 
The boundary ∑ of the problem is a regular 
surface of the reference ellipsoid. In the next 
step, we respond to the Dirichlet BVP using 
the residual potential as boundary data. To 
compute residual potential within and outside 

the boundary ∑, harmonic spline 
interpolation is applied. Determination of the 
optimal regularization parameter and the 
optimal radius of the Bjerhammer sphere is 
very important kernel expansion of the 
harmonic splines modeling. As has been 
pointed out in the previous section, � is the 
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radius of the Bjerhammer sphere for which 
the optimal value is determined using the 
signal-to-noise ratio in modeling the 
boundary data at the reference ellipsoid 
surface. This ratio is used to choose the 
optimal filter; i.e., among different filters for 
removing the noise of the function, the filter 
with the highest signal-to-noise ratio (SNR) 
is selected. The SNR is given by the 
following relation: 

��� = 10 log�� �
∑ ��

��
���

∑ ��� − ����
��

���

� (4) 

where � is the original function and �� is the 
estimated one. For each given �, SNR must 
be computed. The location where the SNR is 
maximized for different values of �  is the 
location of the radius of the optimal 
Bjerhammer sphere. Figure 9 shows 
variations of the signal-to-noise versus � 
parameter. Based on this criteria, optimum 
value for �  parameter was selected to be 
6315564.59 m. 

In order to determine the optimal 
smoothing parameter for solving the system 
of observation equations (Eq.3), L-curve 
method is used (Hansen, 1998). Figure 10 

 displays variations of the regularization 
parameter in the L-curve method for the 
optimal parameter determination. The 
optimal value has been set to 8.8314 × 10� ��. 

Residual potential ��
�(�)  is estimated in 

the external space of the reference ellipsoid 
from the solution of Dirichlet BVP using the 
harmonic splines. We work in the framework 
of the Runge-Krarup, i.e. ��

�(�)  is 
considered as a member of the function space 
of the regular harmonic functions outside the 
Bjerhammer sphere with radius �, which is 
completely located inside the topographic 
masses. It is taken as an approximation of the 
true residual potential at points over and 
outside the surface of the reference ellipsoid. 
Once the residual potential is estimated in the 
external space of the reference ellipsoid, it is 
possible to apply any linear operator to 
express other residual gravitational quantities 
(Jekeli, 2005). The residual gravitational 
acceleration is computed by application of 
the gradient operator to residual gravitational 
potential of former step. Figure 11 shows 
variations of the modulus of the residual 
gravity acceleration at the surface of the 
reference ellipsoid. 

 

 

Figure 9. Variations of the radius of the Bjerhammer sphere with the signal-to-noise ratio. 
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Figure 10. L-curve and the optimal regularization parameter. 

 

 

Figure 11. Residual gravity acceleration over the Persian Gulf (miliGal). 

 
In order to obtain the gravity acceleration, 

we have to restore the effect of the reference 
gravity field. Figure 12 displays variations of 
the computed gravity acceleration in the test 
area over the surface of the reference 
ellipsoid. 

Eventually, we can use these values to 
produce gravity acceleration data at he sea 
surface in the test area of the Persian Gulf. At 
our test area, the sea surface is under the 
reference ellipsoid (Figure 4), i.e., the 
boundary of the Dirichlet problem; 
consequently results are downward continued 
to the sea surface using free-air reduction. 

Figure 13 shows variations of the actual 
gravity acceleration at the sea surface of the 
test area. 

Finally, the computed gravity acceleration 
has been tested for the shipborne gravimetry 
data. Low and sparse coverage of shipborne 
gravity data in the Persian Gulf is shown in 
Figure 14. The data of this region was 
provided by International Gravimetric 
Bureau organization. Table 2 summarizes 
statistics of the difference between the 
computed gravity acceleration and the 
shipborne gravity acceleration observations 
at 5311 stations in the test area. 

 



44                                           Journal of the Earth and Space Physics, Vol. 40, No. 3, 2014 

 

 

Figure 12. Reference component of the gravity acceleration over the Persian Gulf (miliGal).  

 

 

Figure 13. Gravity acceleration at the sea surface over the Persian Gulf (miliGal). 

 

 

Figure 14. Trajectories of shipborne Gravimetry surveys over the Persian Gulf. 
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Table 2. Statistics of the difference between the computed gravity acceleration and 5311 shipborne gravity acceleration 
observations in the test area (in miliGal). 

Maximum 
 
Minimum 
 
Mean 
 
STD 

5.99 
 

-3.49 
 

1.37 
 

2.61 

 
4    Conclusion 
A quite general and still simple technique for 
production of the gravity acceleration at the 
sea areas based on satellite altimetry data and 
harmonic splines has been applied in this 
paper. According to the results obtained for 
the gravity acceleration over the Persian Gulf 
and differences between these obtained data 
and the shipborne gravimetry data (as it is 
shown in Table 2), it is concluded that the 
application of the satellite altimetry 
observations and the harmonic spline 
approach is a viable alternate for acquiring 
the marine gravity data. 
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