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Abstract 
A 2D forward modeling code for DC resistivity is developed based on the integral equation (IE) 
method. Here, a linear relation between model parameters and apparent resistivity values is 
proposed, although the resistivity modeling is generally a nonlinear problem. Two synthetic cases 
are considered for the numerical calculations and the results derived from IE code are compared 
with the RES2DMOD that is a standard software for 2D resistivity forward modeling. For the first 
synthetic case, a model of resistive block surrounded by a homogenous medium is considered in 
different depths from 0.5 m to 4 m. For the nearest case to the surface, the IE pseudo-section is 
similar to its counterpart derived by RES2DMOD but its RMS error is a large value of 13.9 %. 
Increasing the depth of the anomaly results in decreasing of RMS values to 5.4 % for the deepest 
case and it is in correspondence with diminishing of the nonlinearity effects of electric fields for 
larger distances from the sources. The second model is composed of four conductive anomalies 
embedded in different depths. Visual comparison of IE response with software is indicative of high 
similarity of them, and RMS error for this relatively complex model is 7.5%, which can be an 
acceptable misfit for a linear forward operation. A very simple inversion algorithm using linear 
forward operator is applied on a real data set of a landfill survey in Germany collected by Wenner 
alfa array to demonstrate its productivity for practical applications. Reconstructed model using IE 
method is comparable with the inverted model derived by RES2DINV software, and it represents a 
good similarity with the original model. 
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1. Introduction  
Forward modeling plays an important role in 
geophysics, because: 1) one of the main 
applications of the forward methods in 
geophysics is their implementation in 
inversion procedures (Jahandari and 
Farquharson, 2013), 2) if one is dealing with 
field campaign, for example resistivity 
survey, some important questions about 
choosing the best array, distance between 
data points, distance between profiles and 
having insight into some characteristics of 
anomaly can be achieved by forward 
modeling; and 3) forward modeling can be 
used to investigate whether features included 
in a model obtained by inversion that are 
constrained (or even required) by the input 
data (Simpson and Bahr, 2005).  
In DC resistivity modeling by numerical 
methods, a true earth structure is replaced by 
one for which a numerical approximation to 
Maxwell’s equations can be made and 
evaluated. The numerical calculation 
methods for forward modeling of DC 
resistivity are mainly: integral equations 

(Dieter et al., 1969; Pratt, 1972; Hohmann, 
1975; Lee, 1975; Daniels, 1977; Okabe, 
1981; Oppliger, 1984; Xu et al., 1988; 
Mendez- Delgado et al., 1999), finite element 
(Coggon, 1971; Fox et al., 1980; Pridmore et 
al., 1981; Holcombe and Jiracek, 1984; 
Sasaki, 1994; Tsourlous and Ogilvy, 1999; Li 
and Spitzer, 2002, 2005; Marescot et al., 
2008; Ren and Tang, 2010) and finite 
difference (Mufti, 1976; Dey and Morrison, 
1979; Scribe, 1981; Spitzer, 1995; Zhao and 
Yedlin, 1996). The finite-difference and 
finite-element methods are appropriate for 
arbitrary structures, and are much more 
flexible than the integral-equation method; 
however, they are very time-consuming and a 
very large amount of computer storage is 
required to solve the large linear equations 
(Wu et al., 2003). The main limitation of the 
IE method is that the background 
conductivity model must have a simple 
structure to allow for an efficient Green’s 
function calculation (Zhdanov and Michael, 
2009). Fortunately, the most widely used 
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background models in resistivity explorations 
are those formed by horizontally 
homogeneous layers. The theory of Green’s 
functions for layered models is very well-
developed and lays the foundation for 
efficient numerical algorithms. Any deviation 
from this 1D background model must be 
treated as an anomalous conductivity. The 
main advantage of the IE method in 
comparison with the FD and FE methods is 
the fast and accurate simulation of the 
response in models with compact 2D or 3D 
bodies in a layered background. 
Generally, real earth is three dimensional 
(3D) and its three dimensional modeling is 
the most accurate way for investigating the 
subsurface; however, most of the times 2D 
modeling is also preferred. When the target is 
infinitely oriented in one direction, which is a 
very often case, 2D modeling is a good 
approximation of real earth and it can give us 
a proper image of the subsurface. The 2D 
resistivity modeling has been used during last 
decades for different applications such as: 
detecting sinkholes (Schoor, 2002; Fehdi et 
al., 2011), sedimentary rocks (Auken and 
Christiansen, 2004), for detecting small-scale 
targets (Candansayar and Başokur, 2001), for 
detecting buried cavities along with seismic 
refraction tomography (Cardarelli et al., 
2009), to identify sediment-filled faults 
affecting the construction of a dam near 
Tecate, Baja California, Mexico (Perez- 
Flores et al., 2001), for groundwater 
exploration in a hard rock (Nwankwo, 2011), 
etc.  
In this paper, the 2D forward modeling of 
DC resistivity utilizing the IE method which 
was first introduced by Perez- Flores et al. 
(2001) is used. The method is described 
briefly, then two numerical examples are 
introduced and the IE forward results are 
compared with the results of the 
RES2DMOD software. Finally, a very simple 
inversion algorithm by taking the advantage 
of the linear IE forward operator is applied 
on a real data set of a landfill in Germany to 
show the efficiency of the forward mapper 
for real cases. 
 

2. Methodology 
Classical scattering equations derived from 
Maxwell's equations for frequency of zero 
are the basis of the DC resistivity modelling 

using integral equation method. In this 
method, a given model consists of two parts: 
background medium and anomalous zone. 
Background medium is considered as the 
reference framework, and scattered field 
produced by anomalous zone is computed as 
the forward response. Maxwell’s equations 
are nonlinear with respect to the electrical 
conductivity, and consequently resistivity 
forward problem is nonlinear. Perez- Flores 
et al. (2001) made a linear relation between 
the logarithm of apparent resistivity and 
logarithm of true resistivity by using a simple 
linear approximation. The 3D forward 
formula in integral equation form is: 
 log .ݎ)ߩ .ݎ .ெݎ (ேݎ = ଶߨ4ܥ .ݎ)ܯ × .ݎ .ெݎ .ேݎ (ᇱݎ × log ଷ݀	(ᇱݎ)ߩ  ᇱ          (1)ݎ

where C is geometrical factor of the array 
which is n(n+1)(n+2)a for dipole-dipole 
configuration (a and n are dipole separation 
and an integer, respectively). Parameters ݎ, ݎ, ݎெ, ݎே and ݎᇱ describe the position 
vectors of electrodes A, B, M, N and 
anomaly, respectively. M is as (Perez- Flores 
et al., 2001): 
.ݎ)ܯ  .ݎ .ெݎ .ேݎ (ᇱݎ = .ݎ)ܮ .ெݎ (ᇱݎ .ݎ)ܮ− .ேݎ (ᇱݎ − .ݎ)ܮ .ெݎ (ᇱݎ + .ݎ)ܮ .ேݎ  ᇱ)       (2)ݎ
 

where ܮ൫ݎ. .ݎ ᇱ൯ݎ = ᇱݎ) − ݎ)(ݎ − ᇱݎ|(ᇱݎ − ݎ|ଷหݎ − ݅	 		.						ᇱหଷݎ = .	ܣ ݆			݀݊ܽ				ܤ =  (3)                             ܰ.ܯ

In fact, integral form of the interested 
forward problem can be considered as a 
Fred-Holm Integral Equation of the first kind 
(IFKs). Integrating from Equation (1) in y 
direction from -∞ to ∞ leads to the 2D form 
of IFKs:  ݀(ݏ) = .ݏ)ܩ .ݔ .ݔ)݉(ݖ  (4)                     ݖ݀ݔ݀(ݖ

Where ݏ stands for current and potential 
electrodes, ݀ is forward response, (ݔ.  are (ݖ
coordinates of points of the interested area, ܩ 
is kernel and ݉ is the model. 
In this case, the subsurface is divided into ݊௫ × ݊௭ cells and discretizing the previous 
equation gives rise to the following matrix 
equation: ݀ =  (5)                                                      		݉ܣ

where (Perez- Flores et al., 2001): 
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ܣ = (ାଵ)(ାଶ)ସగ ெܫ) − ேܫ − ெܫ +  ே)                                                                                             (6)ܫ
 

and 
 

ெܫ =
۔ۖەۖ
ۓ ସ൫మାమ൯ா()ି଼మ()మ(మିమ)మ 	൫ݔௌ௧ − ᇱଶݖ + ܿଶ൯ − ସయ ܿ			ݎ݂						.		 > .	 ݍ = ටమିమమ 	ସ൫మାమ൯ா()ି଼మ()మ(మିమ)మ 	൫ݔௌ௧ − ᇱଶݖ + ଶ൯ − ସయ 			ݎ݂						.		 > ܿ	. ݍ = ටమିమమగସ ቂ ଵయ − ଵఱ ൫ݔௌ௧ − ᇱଶ൯ቃݖ ܿ			ݎ݂																																																															.	 =  (7)             																																		

 

and 
 ܿଶ = ᇱݔ) − ௌ)ଶݔ + ଶ						.												ᇱଶݖ = ݔ) − ᇱ)ଶݔ + ܷ ᇱଶݖ = ா()(ଵିమ) − ா() ௌ௧ݔ						.									 = ᇱݔ) − ݔ)(ௌݔ −  ᇱ)                                                                              (8)ݔ

 stand for x coordinates of current ݔ ௌ andݔ 
and potential electrodes, respectively. ݔᇱ and ݖᇱ indicate the coordinates of cell’s centers, 
and K(q) and E(q) are in turn complete 
elliptical integral of the first and second kind. 
Matrix A and the column vector m are 
forward operator and model parameters, 
respectively, and Equation (5) represents the 
forward problem. 
 
3. Numerical results 
Two numerical examples are employed  
to investigate the efficiency of the linear  
IE forward modeling. The models are 
compared with the models resulted from the 
standard RES2DMOD software both 
qualitatively and quantitatively. It should be 
mentioned that dipole-dipole array is used for 
two forward numerical cases, but this method 
can be used for any DC resistivity array and 
as Wenner alfa array is manipulated for the 
real case. 
 
3-1. Resistive block in a homogeneous 
medium 
The first numerical example consists of a 100 
Ω.m resistive block in a homogenous 
background with the resistivity of 10 Ω.m.  
 

Anomalous body has a depth of burial of 0.5 
m and its horizontal and vertical extensions 
are 3 and 2 m, respectively (Figure 1). 
Forward responses (pseudo-sections) derived 
from IE method and RES2DMOD software, 
and their difference with pseudo-sections can 
be observed in Figures 2, 3 and 4, 
respectively. Visual comparison of them is 
indicative of their good likeness, but RMS 
error for IE method relative to the software 
result is 13.9 % that is a large error from 
quantitative point of view, but it should be 
considered that the anomaly is near to surface 
(source positions) and an approximate 
technique is utilized. If we increase the depth 
of the anomaly to 1, 2, 3 and 4 m and 
calculate their corresponding RMS errors, it 
can be seen that RMS errors have a 
decreasing trend to 11, 8, 6.3 and 5.4 % 
(Table 1), respectively, which is in agreement 
with reducing the nonlinearity manner of 
electric field by moving to larger distances 
from the source or sources. In other words, 
electric field behavior approaches to linearity 
at large distances from it and therefore the 
linear forward operator can be a good 
approximation of the nonlinear behavior of 
the problem. 

 
Table 1. RMS error for different resistive block depths.  

Depth to top of anomaly (m) 0.5 1 2 3 4 

RMS error (%) 13.9 11 8 6.3 5.4 
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Figure 1. Model of a resistive block surrounded by a homogeneous medium that is a simple model for DC resistivity 

method. 
 

 
Figure 2. Pseudo-section derived from IE method when depth to top of the block is 0.5 m. Data sampling interval and 

dipole separation both were 1 m. Symmetry can be observed from this pseudo- section. 
 

 
Figure 3. Pseudo-section derived from RES2DMOD software when depth to top of the block is 0.5 m. Data sampling 

interval and dipole separation both were 1 m. As the result of IE, it also shows a symmetry. 
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Figure 4. Difference of pseudo-sections for the block with its depth to top equal to 0.5 m. 

 
3-2. Complex model 
For the second synthetic case, a model 
consisting of four conductors of 20 Ω.m were 
considered with different dimensions in a 
homogenous medium of 100 Ω.m (Figure 5). 
Data sampling interval and dipole separation 
were chosen to be equal to 10 m. In general, 
the resistivity responses of single bodies are 
somewhat complex and they incline to be 
mixed with those of the nearby conductors. 
Due to the interfering effect of the shallower 
anomalies, existence of the deep conductor is 
difficult to be recognized. Figure 6 portrays 
the pseudo-section calculated by IE code 

while pseudo-section derived by 
RES2DMOD software and difference 
between two pseudo-sections are represented 
in Figures 7 and 8, respectively. The shape of 
the pseudo-section is very similar to 
RES2DMOD result, but there is a difference 
between their values. Calculated RMS error 
is 7.5% that can be an acceptable error and it 
can be said that this synthetic model showed 
us the reliability of the linear IE forward 
operator even for complex models. This 
linear IE forward mapper allows us to have a 
linear inverse problem for which there are 
many techniques to be used for solving it. 

 

 
Figure 5. Four conductive bodies immersed in a resistive host medium that can be considered as a complex resistivity 

model. 
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Figure 6. Pseudo-section calculated by IE method. It is difficult to find a single block response and they incline to be 

mixed with nearby anomalies.  
 

 
Figure 7. Pseudo-section obtained by RES2DMOD software. Comparing this standard result with IE one is expressive of 

the productivity of IE method. 
 

 
Figure 8. Difference of two pseudo-sections. For n=10 and approximately in the middle of the array, the largest error is 

occurred. 
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data set, collected by Wenner alfa array in 
Germany, was used to show the effectiveness 
of the linear IE forward mapper through 
applying a very simple inversion algorithm 
on the real data. Comparing the model of IE 
code with the model of RES2DINV inversion 
as well as the original model is clearly 
demonstrative of its usefulness for practical 
cases. 
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