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Abstract 

This study investigates the contributions of Atlantic Ocean to June-August rainfall over 

Uganda and western Kenya (KU). The study has utilized the datasets including 

precipitation from the Global Precipitation Climatology Centre, North Atlantic 

Oscillation Index (NAOI), South Atlantic Ocean Dipole Index (SAODI), ERA-interim 

reanalysis, and the Atlantic Ocean Sea Surface Temperature (SST). Singular value 

decomposition (SVD), composite analysis and correlation analysis are used to achieve 

the objective of the study. Results show that the recent extreme rainfall events of June - 

August (JJA) season were experienced in 2007 (above normal) and 2009 (below normal). 

Further analysis reveals that there are significant coupled modes of variability; the first 

mode explains 32% whereas the second mode explains 16% of the total covariance. The 

first SVD mode captures the positive phase of the South Atlantic Ocean Dipole (SAOD) 

over Atlantic Ocean. This is associated with positive anomaly of rainfall in most parts 

of KU. The second SVD mode captures the negative phase of SAOD. The North Atlantic 

Ocean Index (NAOI) exhibits a significant positive correlation of coefficient ≥ 0.3 with 

the mean JJA rainfall anomaly over most parts of KU at 95% confidence level. The 

correlation between the mean JJA rainfall over most parts of KU and NAOI is higher 

compared to that with SAODI. The dominant moisture source in the region during JJA 

season is the Atlantic Ocean and the Congo rainforest. The findings from this study 

provide insight into the influence of Atlantic Ocean on the mean JJA rainfall over KU. 

The study recommends further research on the utilization of NAOI and SAODI as 

predictors of the JJA seasonal rainfall over the study area. The production of the JJA 

seasonal rainfall forecast in the region will enhance better utilization of water resources 

in the region 
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1. Introduction 

Weather affects virtually all socio-economic 

sectors in Uganda and western Kenya (KU), 

particularly rainfall as the weather parameter 

has the highest impact (Muthama et al., 2012; 

Ongoma, 2013). This is true in most 

developing nations, especially in Africa, 

whose economy is mainly dependent on rain 

fed agriculture. Extreme weather events 

such as floods and droughts are thus 

associated with huge socio-economic losses 

in the nations (Noble et al., 2005; 

Hasternrath and Polzin, 2004; IPCC, 2007). 

Although the region has experienced 

frequent occurrence of floods and drought, 

the situation has been exacerbated by 

climate change (Shongwe et al., 2011; IPCC, 

2012; Funk et al., 2012). Kenya and Uganda 

are examples of nations where climate 

variability and change adversely affects 

socio-economy. This calls for proper 

understanding of the factors controlling the 

weather, especially the rainfall to help 

improve the quality of the forecasting. In 

response, this investigates the contributions 

of Atlantic Ocean to June-August rainfall 

over KU. The study area is located within 

longitudes 29°E – 38°E and latitudes 2°S – 

4.5°N (Fig. 1).  

Rainfall in most parts of Kenya and 

Uganda has bimodal characteristic; with the 

‘long rainy’ season observed in March– May 

(MAM) and the ‘short rainy’ period in 

October– December (OND). However, some 

localities especially in western and 

*Corresponding author:                                                                                 E-mail: bob_ogwang@yahoo.co.uk 



132                                         Journal of the Earth and Space Physics, Vol. 41, No. 4, 2016 
 
northwestern Uganda and western Kenya 

experience trimodal rainfall pattern. The 

third rain season is experienced in the 

months of June to August (JJA) (Mutai et al., 

1998). The rainfall in the study area is 

generally highly variable both in space and 

time (Anyah and Semazzi, 2004; Mukabana 

and Pielke, 1996). The observation is 

attributed to the underlying orography and 

presence of large water bodies such as Lake 

Victoria (Indeje et al., 2001; Oettli and 

Camberlin, 2005). This makes the 

population of the region highly vulnerable to 

extreme weather events.  

The observed bimodal rainfall pattern in 

most areas is mainly influenced by the 

migratory nature of the Inter-Tropical 

Convergence Zone (ITCZ) (Nicholson, 2008; 

Okoola, 1998). The monsoon winds driven 

by ITCZ are associated with moisture influx 

over KU (Nicholson, 2008; Okoola, 1998). 

El Niño Southern Oscillation (ENSO), a 

global climate phenomenon caused by 

ocean-atmosphere interactions, occurs 

mainly in the tropical-subtropical Pacific 

and Indian Ocean basins. It has widely been 

studied in the east African region (Bowden 

and Semazzi, 2007; Chang and Zebiak, 2003; 

Mutai and Ward 2000; Camberlin et al., 

2001; Neng et al., 2002; Korecha and 

Barnston, 2007; Zaroug et al., 2014). In the 

area of study, El Niño is associated with 

abnormally wet conditions while La Niña is 

associated with abnormally dry conditions 

during the ‘short rainy’ season (McHugh, 

2006). 

The Indian Ocean Dipole (IOD); a 

coupled ocean-atmosphere system, with 

fluctuations in Sea Surface Temperature 

(SST) anomalies across the Indian Ocean 

has also been found to influence east Africa 

short rainy period (Owiti et al., 2008; 

Marchant et al., 2007; Black et al., 2003; 

Clark et al., 2003; Behera et al., 2005; 

Fischer et al., 2005). Nyakwada et al. (2009) 

studied the Atlantic-Indian Ocean Dipole 

(AIOD) and its influence on East African 

seasonal rainfall. He mainly focused on the 

‘long rainy’ and ‘short rainy’ seasons. 

According to the study, the AIOD has 

significant influence on regional rainfall for 

both seasons. The study noted that the SST 

gradient mode associated with the AIOD had 

significant relationships with the rains in the 

two seasons, although it accounted for the 

highest rainfall variance with the ‘short 

rainy’ season. 

Madden-Julian Oscillation (MJO) has 

also been identified to have great influence 

on intra-seasonal climate variability over 

Kenya, being a determinant on the ranges of 

weather forecasting in the region (Omeny et 

al., 2008). The MJO is a tropical 

atmospheric phenomenon, which develops 

over the Indian Ocean and progresses east 

across the tropics with a period of 30-60 

days (Madden and Julian, 1994). It has 

observed that the active phase of the MJO 

brings enhanced precipitation followed by 

suppressed precipitation in the western parts 

of east Africa, especially around Lake 

Victoria region (Pohl and Camberlin, 2006; 

Omeny et al., 2008).

 

 
                   (a)                                                 (b) 

Fig. 1. (a) Map of Africa showing the region of study (KU red rectangle), (b) Map of Uganda and Kenya, showing 

parts of the neighboring countries. DRC and LVIC denote Democratic Republic of Congo and Lake Victoria, 

respectively. 
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In western and northwestern Uganda and 

western Kenya (KU), the observed JJA 

rainfall has been associated with the influx 

of a moist westerly airstream from the 

Atlantic Ocean and tropical Congo 

rainforest air mass (Mutai et al., 1998). 

There have been several studies in the region 

(e.g., McHugh and Rogers, 2001; Camberlin 

and Philippon, 2002; McHugh, 2004; 

Omondi et al., 2013) that have investigated 

positive rainfall anomalies in East Africa 

and the periods of westerly outbreaks 

bringing moist Atlantic air into the east 

Africa region. The rainfall tends to occur 

during the positive phase of the North 

Atlantic Oscillation (NAO) (McHugh and 

Rogers, 2001). 

In case of ‘long rainy’ failure, the JJA 

rainfall is the key to minimize the intensity of 

the depression/ drought. The ‘short rainy’ is 

also utilized to produce fast maturing crops 

that require less rainfall thus boosting food 

security in the region. Despite the need to 

improve the accuracy of seasonal forecast in 

KU, especially under the current era of climate 

variability and change, little attention has been 

paid to the influence of Atlantic Ocean (AO) 

on JJA seasonal rainfall. This study, therefore, 

investigates the influence of AO on the JJA 

rainfall over KU.  

 

2. Data and Methodology 

Due to uncertainty in the surface climate 

observations over the African region 

(Nikulin et al., 2012; Sylla et al., 2013; 

Ogwang et al., 2014), the gridded 

precipitation datasets are used in this study. 

These datasets are available in University of 

East Anglia Climatic Research Unit (CRU 

TS3.22) for the period 1901-2013 at a 

resolution of 0.5x 0.5 (Harris et al., 2014) 

and in the Global Precipitation Climatology 

Centre (GPCC), monthly precipitation 

dataset provided for 1901-present 

(Schneider et al., 2013). The GPCP version 

2.2 combined precipitation dataset, gridded 

at 2.5 degree resolution (Adler et al., 2003; 

Huffman et al., 2011), can be obtained by the 

NOAA/OAR/ESRL PSD, Boulder, 

Colorado, USA, from their Web site at 

http://www.esrl.noaa.gov/psd/.  

The SST data is the Extended 

Reconstructed Sea Surface Temperature 

(ERSST) version 3b from the National 

Oceanic and Atmospheric 

Administration/National Climatic Data 

Center (Smith et al., 2008), available in their 

website at 

http://iridl.ldeo.columbia.edu/SOURCES/.

NOAA/.NCDC/.ERSST/.version3b/.sst/.  

Reanalysis of the datasets used to 

determine moisture transports were obtained 

from ERA-interim reanalysis, gridded at 

0.75 degree resolution (Dee et al., 2011). 

The variables are including the meridional 

and zonal winds, relative humidity and 

temperature at 850 hPa level. The data sets 

have been used to study various phenomena 

in the region e.g., Žagar et al. (2011) used 

ERA Interim reanalysis data for the period 

1990 - 2009 to study climatology of ITCZ. 

Zaroug et al. (2014) used data from CRU and 

GPCP to simulate the connections of ENSO 

and the rainfall regime of East Africa and the 

upper Blue Nile region using a climate 

model of the tropics. In a study by Ogwang 

et al.(2014) on the influence of topography 

on east Africa climate, CRU, ERA Interim 

reanalysis and GPCP datasets were used to 

evaluate the performance of the Regional 

Climate Model (RegCM).  

The South Atlantic Ocean Dipole (SAOD) 

Index is defined by differences in the 

domain-averaged normalized SST anomaly 

(SSTA) of the two centers of intense 

warming and cooling associated with the 

SAOD, given by Equation 1. 

   SWPNEP SSTASSTASAODI                                                      (1) 

where the square brackets indicate domain 

averages, the subscripts show the two 

regions over which the SSTA averages are 

computed. These domains are described by 

their locations in the South Atlantic Ocean 

as the northeast pole (NEP: 10ºE - 20ºW,  

0º-15ºS) and the southwest pole (SWP: 10º - 

40ºW, 25ºS - 40ºS) (Nnamchi et al., 2011; 

Nnamchi and Li, 2011). 

The North Atlantic Oscillation (NAO) 

index data is provided by the climate 

prediction center in its website available at 

http://www.cpc.ncep.noaa.gov/data/teledoc/

nao.shtml.    

The singular value decomposition (SVD) 

technique is one of the powerful and 

popularly applied methods in atmospheric 

sciences in this study. This technique is 

applied in two data matrices of two jointly 

analyzed fields to identify pairs of the 

coupled spatial pattern and their respective 

temporal variations. Each pair explains a 

http://www.esrl.noaa.gov/psd/
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version3b/.sst/
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version3b/.sst/
http://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml
http://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml
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fraction of covariance between the two 

jointly analyzed fields. This decomposition 

allows the identified dominant modes of 

coupled covariability between the two 

analyzed fields. Details about SVD analysis 

may be obtained from previous studies 

(Juneng and Tangang, 2006; Hannachi et al., 

2007). In this study, SVD analysis is applied 

between the mean JJA rainfall and SST 

anomalies to determine the dominant 

coupled modes of variability between the 

two variables.   

Correlation analysis was deployed in this 

study. It reveals simple relationships 

between pairs of variables (Wilks, 2006; 

Ogwang et al., 2012). In this study, 

correlation analysis is aimed at establish the 

relationship between JJA rainfall over the 

study area and SST, SAOD index and NAO 

index.  

 

3. Results and Discussion 

 

3. 1. Rainfall annual cycle and interannual 

variability 

The rainfall over the study area is 

predominantly bimodal. However, less 

rainfall is reported during JJA season as 

compared with the ‘long rainy’ season 

(MAM) and the ‘short rainy’ season (OND). 

The observation is exhibited by three data 

sets that are in agreement with one another 

( ).  

The observation can support the previous 

studies such as Mutai et al. (1998). The JJA 

rains are important since they reduce their 

intensity of drought owing to MAM rainfall 

failure. 

Figure 3 presents the interannual 

variability of the mean JJA rainfall over the 

study area. 

The results indicate that there are more 

above normal rainfall events (+1) during the 

study period as compared to the below 

normal rainfall cases (-1) (Fig. 3). The recent 

extreme events are 2007 (2009) for above 

(below) normal, respectively. 

 

3. 2. Singular value decomposition 

The singular value decomposition (SVD) 

analysis reveals that the first mode of SVD 

(SVD1) explains 32% of the total covariance 

while the second as SVD2 dominant coupled 

mode explains 16% (Figs. 4 and 5). SVD1 

reflects a general widespread warming in 

north part of 20°S over Atlantic Ocean, 

making SAOD not distinct. Generally, it is 

observed that the gulf of Guinea exhibits 

positive SST anomaly and south western 

Atlantic has negative SST anomaly (Fig. 4a). 

This is associated with positive anomaly of 

rainfall in most parts of Uganda and western 

Kenya (Fig. 4b). Negative rainfall anomalies 

are registered in the southwestern Uganda 

and northwestern Kenya for this mode of 

covariability.  
 

 

Fig. 2. The mean annual cycle of rainfall over the study area based on CRU, GPCP and GPCC datasets, averaged over 

longitudes 29º E - 38º E and latitudes 2º S - 4.5º N. 

 

 

Fig. 3. The interannual variability of the mean JJA rainfall over the study area based on GPCC dataset, averaged over 

longitudes 29ºE - 38ºE and latitudes 2ºS - 4.5ºN. 

Fig. 2 
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Fig. 4. The homogeneous map of the first mode of SVD for the (a) Left field (SST), (b) Right field (Rainfall, RF), and 

(c) The corresponding expansion coefficients. 

  

The first mode explains 32% of the total 

covariance, whereas the expansion 

coefficients exhibit a correlation (r) of 

coefficient 0.73. The green dotted lines 

indicate regions of interest (Gulf of guinea 

and Southwestern Atlantic Ocean), with P 

(N) signifying that the dotted region exhibits 

positive (negative) SST anomaly. 

The second mode explains 16% of the 

total covariance, whereas the expansion 

coefficients exhibit a correlation (r) of 

coefficient 0.79. The green dotted lines 

indicate regions of interest, with P (N) 

signifying that the dotted region exhibits 

positive (negative) SST anomaly. 

The correlation between rainfall and 

second dominant coupled modes is observed 

to be higher as compared to that with the 

dominant coupled modes. The correlation 

coefficients of 0.73 and 0.79 are observed, 

respectively (Figs. 4 and 5). 

SVD2, on the other hand, captures the 

negative SAOD mode (Fig. 5a), with the 

gulf of Guinea extending over the western 

coast of Africa. This exhibits negative SST 

anomaly and south western Atlantic have 

positive SST anomaly. This is associated 

with negative anomaly of rainfall in most 

parts of Uganda and central and western 

Kenya. Positive rainfall anomalies are 

observed in the northern and south-western 

Kenya during the negative phase of SAOD 

(Fig. 5b). There exists a significant 

correlation coefficient of 0.79 (Fig. 5c) 

between the corresponding expansion 

coefficients. 

 

 

Fig. 5. The homogeneous map of the second mode of SVD for the (a) Left field (SST), (b) Right field (Rainfall, RF), 

and (c) The corresponding expansion coefficients. 
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3. 3. Correlation analysis 

Figure 6 displays the spatial correlation 

between the mean JJA rainfall anomaly over 

KU (longitudes 29°E – 38°E and latitudes 

2°S – 4.5°N) and SST anomaly over Atlantic 

Ocean. There is observed significant 

correlation between both South and North 

Atlantic Ocean SST with JJA rainfall over 

KU at 95% confidence level. 

Examination of rainfall occurrence over 

KU during JJA in correlation with South 

Atlantic Ocean Dipole Index (SAODI) and 

NAOI (Fig. 7) shows that more rains are 

observed in the area of study as a result of 

NAOI as compared to SAODI. Generally, 

NAOI is found to have a significant positive 

correlation with the mean JJA rainfall 

anomaly over most parts of KU, as opposed 

to SAODI. SAODI is observed to be 

significantly positively correlated with 

rainfall over the northern sector of Kenya. 

 

3. 4. Water vapor/ Moisture transport 

Figure 8a shows the climatology of the mean 

JJA water vapor/moisture transport further 

to support the higher influence of NAOI as 

compared to SAODI. During wet year, a 

convergence is observed to the west of 

Uganda and divergence is observed in the 

same region during a dry event (Figs. 8b, 8c). 

 

 

Fig. 6. Spatial map of correlation between the mean 

JJA rainfall anomaly over KU region averaged 

between longitudes 29°E – 38°E and latitudes 

2°S – 4.5°N and SST anomaly over Atlantic 

Ocean. The thick red contours indicate regions 

with significant correlation at 95% confidence 

level. 

 

 
(a) 

 

 
(b) 

Fig. 7. Spatial correlation map over KU region (a) for correlation between SAODI and the mean JJA rainfall anomaly, 

and (b) for correlation between NAOI and rainfall anomaly. The thick black contours indicate regions with 

significant correlation at 95% confidence level.  
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Fig. 8. (a) The climatology of the mean JJA water vapor/moisture transport (MTR) at 850 hPa in g kg-1ms-1 is shown 

over the region between longitudes 2-47oE and latitudes 20oS-8oN. The red arrows in (a) show the general 

moisture sources and transport (from Atlantic Ocean and Congo rainforest), (b) the mean composite MTR 

anomaly for wet years (1988 and 2007), and c) the mean composite MTR anomaly for dry year (2009). The 

shaded regions indicate moisture convergence (c) (Positive), moisture divergence (negative), and the vectors 

show water vapor transport. Figures (b) and (c) are represented over longitudes 2ᵒ6E – 47ºE and latitudes 14ᵒS 

– 6ºN, with the blue dotted lines denoting regions with anomalous convergence (divergence) in (b) (c). 

 

The dominant moisture source in the region 

during JJA season is the Atlantic Ocean and 

the moist air mass from Congo basin (Fig. 8a). 

The observation is similar to the ones made by 

Mapande and Reason (2005), who studied 

interannual rainfall variability over western 

Tanzania. Generally, Mapande and Reason 

(2005) noted that enhanced (reduced) westerly 

moisture flux from the southern Congo basin 

occurs during the wet (dry) seasons. 

 

4. Conclusions 

Most areas over east Africa experience a 

bimodal rainfall pattern; however, some 

regions especially in the east Uganda and west 

Kenya experience a ‘short’ third rain season in 

June to August (JJA). Results showed that the 

recent extreme events during JJA season were 

observed in the year 2007 (2009) for above 

(below) normal, respectively. The SVD 

analysis showed that the first mode of SVD 

(SVD1) explains about 32% of the total 

covariance between JJA seasonal rainfall over 

KU and Sea Surface Temperature (SST) over 

Atlantic Ocean. The positive SAOD mode 

over Atlantic Ocean, with the gulf of Guinea, 

exhibits positive SST anomaly and south 

western Atlantic shows negative SST anomaly. 

These are associated with positive anomaly of 

mean JJA rainfall in most parts of Uganda and 

western Kenya. NAOI is significantly 

correlated with the mean JJA rainfall over a 

wide section of KU. This is associated with a 

better distribution of JJA rainfall over KU as 

compared to SAODI. The study recommends 

further research on and possible adoption of 

NAOI and SAODI as predictors of the JJA 

seasonal rainfall over KU. The production of 

the JJA seasonal rainfall forecast in the region 

will enhance better utilization of water 

resources, especially in case of failure in 'long 

rainy' periiod. 
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