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Abstract 

One of the main goals of interpretation of gravity data is to detect location and edges of 

the anomalies. Edge detection of gravity anomalies is carried out by different methods. 

Terracing of the data is one of the approaches that help the interpreter to achieve 

appropriate results of edge detection. This goal becomes a complex task when the 

gravity anomalies have smooth borders due to gradual change of density contrast. In this 

article terracing of data has been inspected using the profile curvature method. The 

synthetic data are used to assess the accuracy and efficiency of the method in edge 

detection of gravity anomalies. The results of this research have been compared with 

the results of other methods such as first vertical derivation, analytic signal, tilt angle, 

horizontal gradient of tilt angle, and laplacian second derivative. Two real data set are 

also used to show the applicability of the method.  
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1. Introduction 

The anomaly maps of the gravity field do 

not, in general, represent the boundaries of 

anomalies clearly, so that most of the 

existing anomalies are vague and unclear. 

Various methods have been represented in 

order to determine anomalies and their 

boundaries. In this research, one of the 

newest methods, titled terracing of the 

potential field using the profile curvature, 

has been inspected. The terracing operator 

works iteratively on gravity (using local 

curvature of the measured fields) to produce 

a field comprised of uniform domains 

separated by abrupt domain boundaries 

(Cordell and McCafferty, 1989). The gravity 

of the physical field in every domain is fixed 

for the boundaries. In every point, curvature 

is calculated by the Laplacian operator. Most 

of the edge detection methods are actually 

directional filtering; for example they are 

arranged in east-west or north-south 

directions.  

The profile curvature method is not 

limited to specific direction and operates in 

direction with the most variation of data 

(Cooper and Cowan, 2009). The terraced 

map is analogous to a geologic map where 

domains are separated by the abrupt 

boundaries. The terracing operation is based 

on the fact that a data point belongs only to 

one domain. A window is moved across the 

data and the value of the field at the center 

of the window depending on the curvature of 

the data is increased, decreased or 

unchanged (Fig. 1). The consequences of 

this method on the synthetic data and the real 

data of Chahbahar zone and Zereshloo’s 

mine have represented the superiority of this 

method. 

 

2. Horizontal and vertical derivatives 

Vertical derivative is used extensively in 

interpretation of potential field anomalies. 

This filter enhances the details of shallow 

anomalies. However, as this filter is a high-

pass filter, in addition to the surface 

anomalies, noises will be amplified too. This 

filter can be used with the first and second 

orders. However, vertical derivative can be 

applied with non–integer orders to produce a 

good equilibrium between signal and noise 

quantities. This method is preferred when 

anomaly variation throughout the survey 

area is uniform. Therefore, the method is 

appropriate in the areas with different types 

of data compiling a map with different order 

of vertical derivatives. 
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Fig. 1. Function values at data point 

0x  with )1( stn  iteration are kept the same or set to the maximum or minimum of 

)( shn iteration values. This is true within the narrow window w (centred on
0x ) on the basis of the direction of 

the curvature (Cordell and McCafferty, 1989). 

 
The horizontal derivatives enhance the 

edges; whereas vertical derivatives narrow 

the width of anomalies, thereby can 

determine the source bodies more 

accurately. The higher the order of the 

derivative used, the more pronounced is the 

effect. However, as derivative filters are a 

form of high-pass filter; accordingly, noise 

in the data is enhanced (Cooper and Cowan, 

2004). 

The vertical gradient can be computed 

through following equation (Blakely, 1995): 
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where   is the gravity anomaly, 2k

and F is Fourier transform. 

 
3. Analytic signal operator 

Another popular method to determine the 

borders is analytic signal. Analytical signal 

with a simple conversion in a frequency 

range is an analytical complex operator. The 

real part and imaginary parts of the 

analytical signal are horizontal and vertical 

gradients of gravity data, respectively. 

Hilbert transform could be used to obtain 

vertical gradient from horizontal one. 

The gravity anomalies or their vertical 

gradients (Klingele et al., 1991) are used to 

compute the analytic signal through 

following equation:  
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where f is gravity or its vertical gradient. 

The analytic signal has a shape on 

causative bodies that depends on the location 

of them rather than their amplitudes 

(Nabighian,1972). The maximum amount of 

this area determines anomaly corners on the 

map. 
 

4. Tilt angle filters 

Tilt angle is defined by Miller and Singh 

(1994) as follows: 













 

5.022

1

))()((
tan

yfxf

zf
T                 (3) 

where f represents the gravity data. The tilt 

angle is positive over the source and 

becomes zero over or near the edge where 

the vertical derivative is zero and the 

horizontal derivative is the maximum. It is 

also negative outside the source region. The 

tilt angle has a range of -90 to 90 degree and 

is much simpler to interpret the analytic 

signal phase angle. 
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5. Horizontal derivative of the tilt angle 

Veruzco et al. (2004) suggested use of the 

total horizontal derivative (THDR) of the tilt 

angle: 
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Pilkington and Keating (2004) showed 

the reliability and stability of the method for 

edge detection of magnetic anomalies. This 

filter was applied for synthetic and real 

gravity data by Cooper and Cowan (2006). 

 
6. Normalized version of the total 

horizontal derivative 

The amplitude of the maximum horizontal 

gradient enhances edges of any orientation 

and is given by: 

22 )()( yfxffxtot                            (5) 

A normalized version of this filter is 

defined by the following equation (Cooper 

and Cowan, 2006): 
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7. Terracing method 

Terracing is a method for interpretation of 

potential field data. Application of this 

method to the potential field data develops 

domains in which the measured gravity is 

constant and their limits by the surroundings 

are projected by sharp boundaries (Cordell 

and McCafferty, 1989). Terracing is carried 

out by calculation of a curvature of 2 and 3 

dimensional states. The curve is sharper over 

the point for which the curvature rate is 

greater. The curvature of a curve is 

calculated as follows:  
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                                                  (7) 

where  is the tangent vector of the curve, s 

is the length of the curvature and k is the 

curvature of the curve. When the data, e.g., 

the potential field data, have ruptured nature, 

Laplacian and the profile curvature operator 

methods have been used for terracing. 
 

7. 1. Laplacian operator 
The data gradient for one dimensional state 

using Laplacian derivation is calculated as 

follows: 

2
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where DL1 is the curvature in each point. In a 

moving window (Fig. 1), if the curvature 

value for the assumed point is zero, the 

potential field related to the center of the 

window will remain unchanged. If the 

estimated curvature value is positive, the 

potential field related to the center of the 

window is set the maximum rate, while in 

case of negative curvature, the potential field 

is set to the minimum value of the window. 

Figure 1 shows how the method is applied. 

The two-dimensional status of the curvature 

is calculated as follows: 
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DL2  is the curvature point in two 

dimensional state. This method can be 

performed repeatedly to reach a better and 

sharper result. 

 
7.2. Profile curvature method 

In this method the curvature of the profile is 

used. The curvature of the data was 

computed using directional approximation 

of the Laplacian operator which is the 

direction of the steepest ascent at each point 

of the data. Mathematically, curvature is 

defined as the change in the slope angle 

along a very small arc of the curve, ds, (Fig. 

2; Thomas, 1968). Curvature is inverse 

radius of a circle that is tangent over a small 

arc over, at least, the three points of the curve 

(Kepr, 1969). The general equation for 

curvature )(k  of a plane section through a 

point on a surface is (Kepr, 1969): 
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where  is the angle between normal vector, 

on the section plane, and a given point. The 

1  and 2  are, respectively, the angles 

between the tangent of the given normal and 

the angles between the tangent of a given 

normal section at a given point and the axes 

x,y. where: 
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For the profile curvature (κs), the value is 

always in the section plane. The angular 

relationships are (Mitasova and Jarasalave, 

1993): 
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Curvature of the profiles is used in a 

window analogous to the Laplacian. The 

movable window on potential field maps 

would define the separable co-potential areas. 
 

8. Synthetic models 

The synthetic models are shown in Figure 3a. 

Figure 3b shows gravity anomalies of the 

synthetic models. Using the inverse Fourier 

transform of Equation (1), the edges of the 

synthetic models are detected and shown in 

Figure 3c. As it is inspected from the figure, 

vertical derivatives show the width of 

anomalies; thereby more accurately we can 

identify the location of the shallow cubes.  

The results of the analytic signal by using 

Equation (2) have been presented in Figure 2c. 

The analytic signal is positive over the model, 

but the response is blurred due to the model 

depth. 

The results of the tilt angle operation are 

presented in Figure 3e. 

The contour of the theta map also show the 

location of the model edges, but the response 

is again blurred due to the model depth. 

Figure 3 f shows the result of the THDR 

operation. Figure 3g shows the normalized 

total horizontal derivative of the data in Figure 

3b. THDR can properly determine shallow 

sources, while the response from the deeper 

sources is relatively subdued. TDX, however, 

can specify both shallow and deep sources.  

 

 

Fig. 2. In a mathematical definition, a curvature is the 

change in the slope of a curve over a small 

increment at ds along the curve at point a. The 

curvature is an inverse in the radius of a circle 

 that is tangent to the curve over the same 

increment ds (Thomas 1968). 
 
 

 

 
 

 
 

 

 
Fig. 3. (a) 3D view of seven rectangular views with different depths. Density contrasts in this figure were -1 and 1 g/cm3, (b) 

gravity data, (c) the first vertical derivation of data, (d) analytic signal of the data a, (e) tilt angle of the data in a, (f) 

total horizontal derivative of the tilt angle data (i.e. THDR) using Eq. 3, (g) stabilized amplitude of the total horizontal 

derivative of the data in a using Eq. 4, (h) the results of the Laplacian derivative function of a, with twenty iterations, 

(i) the profile curvature function based on the results of a using Eq. 11, with twenty iterations. 
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Figure 3h shows the results of the 

Laplacian derivative operation by which the 

data are segmented into distinct regions 

centered on each of the seven bodies. The 

problem of using this method is in its 

direction of applicability in north-south and 

east-west. 

As it can be seen TDX and THDR filters 

depicted the borders with high accuracy 

compared to the analytic signal, Laplacian 

derivative operator, and the filters based on 

the local phase. Figure 3i shows the results 

of the profile curvature operator. The border 

between cubes shows the high accuracy 

compared to the vertical derivation, analytic 

signal, Laplacian derivative operator and the 

filters based on the local phase. This method 

can be performed repeatedly to achieve 

better and sharper result. Figure 4 shows the 

gravity data from Figure 3, with a small 

amount of random noise. According to 

Figures 3 and 4, it can be revealed that the 

profile curvature (Fig. 4g) is more robust to 

noise than the Laplacian function (Fig. 4f), 

analytic signal operator (Fig. 4b) and the 

filters based on the local phase. However, as 

both Laplacian derivative operator and the 

profile curvature used the second horizontal 

derivatives of the data, they are prone to 

noise problems. The data may benefit from 

smoothing prior to their computation. 
 

 
 

 

 

 
Fig. 4. (b) Gravity data from Fig. 3d, but a small amount of uniformly distributed random noise is added, (c) gravity 

data from Fig. 3e, but a small amount of uniformly distributed random noise is added, (d) total horizontal 

derivative of the tilt angle data (i.e., THDR), but a small amount of uniformly distributed random noise is added, 

(e) gravity data from Fig. 3g (TDX), but a small amount of uniformly distributed random noise is added., (f) 

gravity data from Fig. 3h, but a small amount of uniformly distributed random noise is added, (g) gravity data 

from Fig. 3i, but a small amount of uniformly distributed random noise is added. 
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9. Real data 

The consequences of applying the profile 

curvature method to the two sets of real data 

are presented here. 

 

9.1. First real data set (Chahbahar) 
The first real data set belongs to an area close 

to Chahbahar in southern Iran. The area is 

shown in Figure 5 (black rectangle).  

This area is limited to Jazmoorian in north, 

Oman Sea in south, Pakistan in east and 

Zeerdan fault in west. The dominant 

geological formation of the area is Makran 

sedimentary basin. The salient characteristic 

of the Makran sedimentary basin is the 

existence of east-west oval syncline. This 

syncline is blocked by the east-west faults. 

A Scintrex CG3 gravimeter with a 

sensitivity of 5 micro-Gals is used for reading 

the data. The altitude of the station was 

measured by a total station (Leika 506). 

Figure 6a shows Bouguer gravity anomalies. 

Figure 6b shows the first vertical derivatives 

applied to Bouguer anomalies. Figure 6c 

shows the analytic signal of the data, with an 

unclear edges and the figure is cluttered. 

Figure 6d shows the tilt angle of data in 

Figure 6a. In Figures 6e and 6f, the total 

horizontal derivatives (i.e. THDR) of the tilt 

angle data are compared with TDX (Eq. 6). 

Figure 6e is dominated by a few large 

amplitude responses. TDX is also noisy, but 

shows the smaller features with greater clarity 

than conventional filters (analytic signal or 

first vertical derivatives).  

Figure 6f shows the total horizontal 

derivative (TDX) of data in Figure 6a with the 

stabilized amplitude. Figure 6g shows the 

gravity data using the Laplacian derivative 

operator. The ragged behavior of the contours 

of the terraced data mentioned above is clearly 

visible throughout the image.  

 

 

Fig. 5. Map of Iran, Chahbahar and Zereshloo areas are shown with black and red rectangles, respectively 
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Fig. 6. (a) Gravity data from the Bouguer anomaly portion of the Chahbahar, (b) first vertical derivation of a, (c) 

analytic signal function based on the results of a, (d) tilt angle of the data in a, (e) total horizontal derivative of 

the tilt angle data (i.e. THDR), (f) stabilized amplitude of the total horizontal derivative of the data in (a), (g) 

results of the Laplacian derivative function of a, with twenty iterations, (h) profile curvature function based on 

the results of a, with twenty iterations. 

 
The profile curvature results are shown in 

Figure 6h. The profile curvature clearly shows 

the location of some model edges. The most 

important advantage of terracing methods 

including profile curvature and Laplacian 

operator is that they can identify the border of 

the anomalies without distorting them. On the 

other hand, the shape of the anomalies, 

particularly in Bouguer maps, remains 

unchanged. It should be mentioned that the 

profile curvature method (Fig. 6h) is quite 

smoother than the Laplasian operator (Fig. 6g), 

especially in the border of the anomalies. 

 

9.2. Second real data set (Zereshloo) 
As a second example, the method was applied 

to the gravity data of the Zereshloo mine in 

northern Iran. The location of the mine is 

shown in Figure 5 with the red rectangle. The 

main geological structure is Andesite with Iron 

oxides and Basalt Tuff with Olivine and 

Pyroxene.  The two are separated by a north-

south fault. The complete Bouguer anomalies 

are shown in Figure 7a. Figure 7b shows the 

first vertical derivatives of Bouguer anomalies 

(Fig. 7a). Figure7c shows the effect of the 

analytical signal operator. Figure 7d shows the 

results of tilt angle operator. Figure7e shows 

the total horizontal derivatives of the tilt angle 

results (THDR). Figure7e shows total 

horizontal derivative (TDX) with the stabilized 

amplitude. 

The Laplacian and profile curvature results 

are shown in Figures 7f and 7g, respectively. 

Boundaries are smoother in Figure 7h than the 

boundaries in Figure 7g. The advantage 

explained in section 9.1 is also valid for the 

obtained results of this set of data. However, as 

the local anomalies are more dominant in 

Fig.7a, Figs. 7b-c shows the edges of these 

anomalies better than the former set of real 

data (Figs. 6a-b).
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Fig. 7. (a) Gravity data from Zereshloo mine in northern Iran, (b) first vertical derivation of a, (c) analytic signal 

function based on the results of a, (d) tilt angle of data in a, (e) total horizontal derivative of the tilt angle data 

(i.e. THDR), (f) stabilized amplitude of the total horizontal derivative of the data in a, (g) results of the 

Laplacian derivative function of a, with twenty iterations, (h) profile curvature function based on the result of 

a, with twenty iterations. 

 
10. Conclusions 
Boundary of the gravity anomalies are 

determined by the following methods: 

vertical derivation, analytic signal, the filters 

based on the local phase, and terracing 

methods. The borders are determined more 

clearly than the profile of the curvature 

method. The Laplacian and the profile 

curvature methods give more accurate 

results when an iterative process is used. The 

Laplacian and profile curvature are sensitive 

to noise, because they help calculate second 

level format of data. Using the profile 

curvature method and the Laplacian 

operator, the main geology structure is also 

retained, in addition to specifying the 

borders. Analytic signal filters and phase 

angle do not properly represent the effects of 

deep models, whereas the terracing operator 

by both methods of Laplacian and profile 

curvature shows the effect of both deep and 

shallow models. 
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