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Abstract

A constrained nonlinear optimization method based on nonlinear programming techniques has
been applied to map geometry of bedrock of sedimentary basins by inversion of gravity anomaly
data. In the inversion, the applying model is a 2-D model that is composed of a set of juxtaposed
prisms whose lower depths have been considered as unknown model parameters. The applied
inversion method is a nonlinear one, which minimizes the objective functions by definition of
different objective functions and an initial simple model to improve the initial model parameters.
In this study, for different cases, sufficient objective functions are defined based on the condition
which is encountered in the inverse problem. To control the under- determinacy part of the inverse
problem and to prevent unreasonable instability in the resultant model, damping terms are added to
the objective function. The act of synthetic inversion for different cases of parameterization has
been examined and the results are analyzed. The results have almost depicted the recovery of the
model and also fitting of the original and model response data. In addition, the method has been
used to invert real gravity data in Aman Abad area. From the inversion results, depths of the basin,
features like fractures and uplift in bedrock, along specific profiles have been determined. Thicker
parts of sediments in the basin along the profiles have also been recognized, which have the
potential for exploring drinking water in this area.

Keywords: Optimization, Objective function, Geometry of bedrock, Inversion, Constrains,
Gravity data.

1. Introduction

To map the sediment thickness and bedrock
topography, there have been various methods
in recent years by which we can find many
applications for these types of mapping in
subsurface geological investigation such as:
geotectonic, modeling groundwater flow,
exploring petroleum, studying ice stream
flow and modeling ground motion
amplification during an earthquake in a
sedimentary basin. It is known for certain
that the basis of understanding of a ground
water system in a valley or determining a
major faulting system depends on sediment
thickness and  bedrock  topography
(Annecchione et al., 2001; Schaefer, 1983).

If interface intersects any vertical line only
once (Smith, 1961) and the gravity anomaly
is known to exist in a continuous way with
infinite precision, mapping the depth to an
interface, separating the two homogeneous
media will be considered to a nonlinear
problem with a wunique solution. The

knowledge of the discontinuous relief of a
sedimentary basin could also lead to locating
oil structural traps, to be of combination with
the discontinuity (Silva et al., 2010). Because
of the higher density (higher seismic
velocity) of bedrocks than that of sedimental,
alluvial, or volcanic deposits, seismic waves
can be trapped and thus amplified, resulting
in disastrously large ground motion and
extended  earthquake  duration. The
Knowledge of a subglacial sediment can be
efficiently used to understand the dynamic
evolvement of the ice streams in Polar
Regions (Bell et al., 1999; Studinger et al.,
2001).

In practice, these last conditions are never
fulfilled making the solutions become
unstable. Therefore, there are methods
designed to solve this problem, which
introduce an a priori information to stabilize
the solutions (Burkhard and Jackson, 1976;
Pedersen, 1977; Richardson and Maclnnes,
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1989). Stabilizing the problem condition can
alsobeaccomplished by limiting the parameter
corrections at each iteration, using, for
example, a parameter covariance matrix
(Burkhard and Jackson, 1976; Richardson
and Maclnnes, 1989) or abandoning
eigenvalues smaller than a threshold one in a
generalized inverse approach (Pedersen,
1977).

The clear former information required by
these methods can be a good guess for the
thicknesses of the upper medium and the
knowledge of the density contrast between
the media.

Oldenburg and Pratt (2002) developed
an iterative method based on Parker’s
expansion of the gravity anomaly into a
power series of the function representing the
interface in the wave number domain
(Parker, 1973). Parker’s formula was
represented in a noniterative inversion by
Guspi (1993), expressing it as a power series
expansion in the reciprocal of the density
contrast.

In Granser’s method, the kernel of the
nonlinear integral equation relating the
gravity anomaly to the interface relief
is expanded in Taylor’s series with
the coefficients of the inverse series obtained
from the coefficients of the original series
(Granser, 1987). If the low-pass filter is
applied to the observed anomaly, these
methods stabilize the solutions, with a cutoff
frequency designed to guarantee the
convergence of the series. The lower cut-off
frequency and the low order of the
expansion, result in a stable inversion,
the more stable solutions and the smoother
estimated interface. The only clear former
information necessary to be taken into
account is the density contrast between
the two media and the interface average
depth. Successive approximations of the
interface were obtained by computing
the residual associated relief between
the observed and the computed anomaly
using the current approximation for the
interface at each iteration. Added to the
previous approximation is the residual
topography  (Courtillot et al., 1974;
Pilkington, 2006).

In these methods, at each iteration either an
integral equation (Courtillot et al., 1974) or a
matrix equation (Pilkington and Crossley,

1986) is solved, being equivalent to
continued observed anomaly to some level
below the surface. The stabilizing procedure
is therefore reduced, to stabilize the
downward continuation procedure, in the
matrix formulation of Pilkington and
Crossley.

Two inversion methods can be used to
determine the bedrock topography and
probable discontinuities. Inversions can be
performed manually by adjusting the
geologic model manually, or automatically
using an optimization algorithm. Barbosa,
Silva, Oldenburg and Pratt did review
different methods (Barbosa et al.,, 1999;
Oldenburg and Pratt, 2002).

Fourier method was the basis of several
algorithms using Parker’s formula (Li, 2010;
Parker, 1973; Pilkington, 2006). The
implementations take advantage of the rapid
forward calculations of gridded data via the
Fast Fourier Transform (FFT) while forming
the backbone of several commercial software
products. Methods based on Parker’s formula
(computing the gravity effect of an arbitrary
interface  separating two homogeneous
media) that stabilize the solutions either by
applying a low-pass filter to the data or by
using a damping parameter, implicitly
introduce an a priori information in which the
interface is smooth. The lower the cutoff
frequency or the larger the damping
parameter, the smoother the computed
interface is.

Gravity inversion corresponds to a linear
(density unknown) or nonlinear (geometry
unknown) inverse problem depending on
the model parameters. Among the nonlinear
techniques, inversion of basement relief
of sedimentary basins is an important
application which remains to be considered.
A common way to approach this problem
consists of discretizing the basin using
polygons (or other geometries), and
iteratively solving the nonlinear inverse
problem by local or global optimization.
Nevertheless, this kind of approach is highly
dependent on the prior information used and
lacks a correct solution appraisal (nonlinear
uncertainty analysis). When the geometry
of the bodies is unknown, there will be made
some assumptions about the values of
the corresponding  densities. = Among
the nonlinear techniques, the inversion of
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basement relief of a sedimentary basin is
a relatively common task (Barbosa et al.,
1999; Blakely, 1996; Chakravarthi and
Sundararajan, 2007; Zhou, 2013).

Nonlinear gravity inversion of basement
relief in sedimentary basins can be
considered as a 2D or 3D problem depending
on the model conceptualization. The 2D
case is seen to be very common, consisting of
the inversion of one or different profiles
across the basin, generally with its maximum
depth.

A nonlinear optimization is the classical way
to tackle this problem, where the unknowns
are the depth of the basement at certain
locations, or the depth and some additional
parameters to take into account the density
variations of the sediments with position. As
inverse problems are being more complicated
in the real world, it is a need to use better
optimization algorithms. Almost in all
optimization problems, the goal is to find
minimum or maximum of an objective
function. Today, different researchers in the
field of computer science, mathematics and
physics seek to invent new methods, make
more compatibility and harmony in inversion
method. In this regard, getting solutions of
the inverse problems can be achieved by
optimizing methods where an objective
function, including parameters that describe
the model in the nature, can be defined. In
using optimizing methods, the parameters
will be estimated when an objective function
can be minimized.

This paper has applied an inversion technique
in gravity and for a problem, by defining
different objective functions, including
parameters which describe the models. In
this work, a constrained nonlinear
optimization method for gravity data
inversion has been used where linear or
nonlinear constraints can be considered to
model parameters.

In this study, the subsurface is also divided
into rectangular prisms while iterative
nonlinear optimization technique is used to
estimate the thickness of elementary prisms
that approximate the sedimentary basin
geometry.

2. Inversion M ethadology
2.1. Forward Model

Forward model is considered for the

inversion is a 2-D model. The 2-D model
in x-z plane can be divided into M
rectangular prisms which approximate a
sedimentary basin. Density contrast between
sedimentary and its bedrock will be
considered constant. Effect of wvertical
component of gravity (g) of one of these
prisms in one observation point with position
(X0, Yo), on the surface earth, can be
calculated by the following relation (Plouff,
1966):

g(XO’ZO):

K pIXIZVZlog

where K is the wuniversal constant of
gravitation, p is density contrast, I'g is vector
distance from the observed point to origin
and r is vector distance from the origin to a
point of anomalous body (prism). After
integration, the gravity effect of one of the
prisms at one observation point is shown
below (Plouff, 1966):

X2 + Z2
2 2
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where X, Xz, 7, Z, are the bounds of prism.
Usually, n layers and n-1 interfaces are
considered. Each layer includes M prisms
that lower bound will estimate interface
between the layers. Each layer and each
prism number is shown by index i and j
respectively. Therefore, the effect of these M
prisms in an observation point can be
estimated by adding the gravity effect of all
prisms. Considering that the density contrasts
in one layer for all prisms are equal, the
following  relation is arranged for
programming purposes from the above
equation:



30 Journal of the Earth and Space Physics, Vol. 43, No. 4, Winter 2018

2 2
XZij +Zzij
X2ij log—2 5+
X2ij +Zlij
RS 1 Xiij
(=) 2 L
Zn:: Z
nm 2ij 2ij
=K
K55 2 2
Xii: +Z5::
1ij 2ij
Xllj log—2 3
Xiij *4ijj
o %2 %
221IJ tan —tan ——
th th

€)

where g is the gravity effect of all prisms in a
measured point. In other words, the gravity
effect of these prisms in each layer, with a
constant density for a layer that can
approximate the gravity effect of a
sedimentary basin. For a two layers model,
the value of n is set to 2.

2.2. Constrained Nonlinear Optimization
Method

2.2.1. Optimization Theory Overview
Optimization techniques are used to find a set
of design parameters, X = [Xy, Xy, ..., X,| that
can, in some way, be defined as optimal. In a
simple case, this might be the minimization
or maximization of a characteristic system
that is dependent on X. In a more advanced
formulation, the objective function, f(X), to
be minimized or maximized, might be
subject to constraints in the form of equality
constraints, G;(X) = 0 (1= 1,...,m,); inequality
constraints, Gi( X) < 0 (i = m, + 1,...,m);
and/or parameter bounds, X;, X, (lower and
upper bound).

A General Problem (GP) description is stated

as:

min, f(x) 4)
Subject to

Gx®=0i=1,..,m, 5)
G(x)<0,i=m.+ 1,..,m, (6)
X; < X < Xy @)

where x is parameters vector with length n,
f(x) is the objective function, which returns a
scalar value, and the vector function G(x)
which returns a vector of length m containing
values of the equality and inequality

constraints evaluated at x. An efficient and
accurate solution to this problem depends not
only on the size of the problem in terms of
the number of constraints and design
variables, but also on characteristics of the
objective function and constraints. When
both the objective function and the
constraints are linear functions of the design
variable, the problem is known as a Linear
Programming (LP) problem. Quadratic
Programming (QP) concerns the
minimization or maximization of a quadratic
objective function that is linearly constrained.
For both the LP and QP problems, reliable
solution procedures are readily available.
More difficult to solve is the Nonlinear
Programming (NP) problem in which the
objective function and constraints can be
nonlinear functions of the design variables. A
solution of the NP problem generally requires
an iterative procedure to establish a direction
of search at major iteration. This is usually
achieved by the solution of an LP, a QP, or
an unconstrained subproblem.

2.2.2. Active Set Algorithm

In constrained optimization, the general aim
is to transform the problem into an easier
subproblem that can then be solved and used
as the basis of an iterative process. Solutions
of this problem have focused on the solution
of the Karush-Kuhn-Tucker (KKT) equations
(Kuhn and Tucker, 1951). The KKT
equations are necessary conditions for
optimality for a constrained optimization
problem. If the problem is a so-called convex
programming problem, that is, f(x) and Gj(x),
i =1, .., m, are convex functions; then, the
KKT equations are both necessary and
sufficient for a global solution point. Let x*
be a local extremum point of function f
subject to the constraints mentioned in
Equations (5), (6) and (7). The Karush-Kuhn-
Tucker equations can be stated as:

VE(x*) + X24.VGi(x) =0 (8)
A‘i .VGi(X*) = O, i= 1, TS 1) I (9)
4,20, i=m.+ 1,..m, (10)

In addition to the original constraints
mentioned for function f(X), the first equation
describes a cancellation of the gradients
between the objective function and the active
constraints at the solution point. For the
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gradients to be canceled, Lagrange
multipliers (A;, 1 =1, ... , m) are necessary to
balance the deviations in magnitude of the
objective function and constraint gradients.
Because only active constraints are included
in this canceling operation, constraints that
are not active must not be included in this
operation and so are given Lagrange
multipliers equal to 0. This is stated
implicitly in the last two Karush-Kuhn-
Tucker equations.

The solution of the KKT equations forms the
basis to many nonlinear programming
algorithms. These algorithms attempt to
compute the Lagrange multipliers directly.
Constrained quasi-Newton methods insure
super linear convergence by accumulating
the second-order information regarding the
KKT equations using a quasi-Newton
updating procedure. These methods are
commonly mentioned as  Sequential
Quadratic Programming (SQP) methods,
since a QP subproblem is solved at each
major iteration, also known as Iterative
Quadratic = Programming  (Hock  and
Schittkowski, 1983), Recursive Quadratic
Programming (Biggs, 1973), and Constrained
Variable Metric methods (Powell, 1983).

2.2.3 Sequential Quadratic Programming

(SQP)
SQP methods represent the state of the art in
nonlinear programming methods

(Schittkowski, 1986). The method allows us
to closely mimic Newton's method for
constrained optimization just as is done for
unconstrained optimization (Biggs, 1973;
Han, 1977, Powell, 1978a, 1978b). At each
major iteration, an approximation is made of
the Hessian of the Lagrangian function using
a quasi-Newton updating method which is
then used to insure a QP subproblem whose
solution forms a search direction for a line
search procedure. A general review of SQP is
found in -Fletcher, 2013; Gill et al., 1981;
Powell, 1983; Schittkowski, 1986.

Given the problem description in GP
(Equation 4), the principal idea is the
formulation of a QP subproblem based on a
quadratic approximation of the Lagrangian
function.

L(x,A) = f(x) + X2, . G;(%). (11)

If x* is a local extremum point of the

objective function f, then Equation (11) can
be used in the procedure of the minimization
in the following cases:

a) The constraintG;(x)=0,i=1,..,m.
Assume that x* is a regular point of these
constraints. Then, there is a A eR™ such that
Equation (8) is satisfied, subject to the
constraint.

b) If m.< m, a constraint G;(X) is active at x*
if Gi(x*) = 0, and it is inactive if G;(x*) < 0.
Note that all equality constraints are active.

c¢) If x* is a local extremum point of function
f subject to Equation (5) and (6). Assume that
x* is a regular point of these constraints.
Then Equation (8), (9) and (10) are held.

The QP subproblem obtained by linearizing
the nonlinear constraints. This subproblem
can be solved using any QP algorithm. The
solution of QP algorithm is used to form a
new iterate

X1 = X + oy (12)

The step length parameter oy is determined
by an appropriate line search procedure so
that a sufficient decrease in a merit function
is obtained and Xy and di are estimated by
QP algorithm.

A nonlinearly constrained problem can often
be solved in less iteration than an
unconstrained  problem  using  SQP.
The reason for this is that, because of
limits on the feasible area, the optimizer
can make informed decisions regarding
directions of search and step length. The
process of nonlinear optimization that
explained above is summarized and shown in
Figure 1.

For implementation of the above-mentioned
method for the inversion, a Matlab toolbox
algorithm, named optimization tools,
constrained nonlinear minimization, has been
used.

2.3. Choosing Form of the Objective
Function

This method has flexibility of using different
forms of the objective function. For over-
determined problem where the number of
data is greater than that of model parameters
and the inverse problem well-constrained by
data and noise that has less effect on the
instability of the inversion, the objective
function can be chosen in one of the
following forms:
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2.3.1. Over and Even Determined Inverse
Problems
haldp-af| _
. N
Zizq 147 -gi(0)]
. (13)

N d°—dPy?
f(x) = RMS = /—Z-ﬂ(‘g =iy (14)

where f(x) is the objective function, x is a
vector of model parameters, df is observed
data, d} is predicted data, g(x) is the forward
model vector, mean is error average value,
RMS is standard deviation or Root Mean
Square error and N is the number of data.
Sometimes, both of the above equations can
be used in the case where the number of data
is the same as that of model parameters (even
determined problems, practically is not
usual).

f(x) = mean =

2.3.2 Under deter mined inver se problems
Making stability in the inversion can be
achieved by defining other forms for the
objective function such as the following:

£(0) = [[Wa(d° — g0)|* +
B2 [ Wiy x|[2 (13)

In the above equation, the first term shows a
weighted measure of the predicted error and
the second one shows the weighted length of
the model parameters. In this equation, B is
called damping factor and shows the weight
of each term in minimization, x is vector of
model parameters, W,, is a matrix which
weights model parameters, Wy is a matrix
which weights data that may be diagonal,
d® is vector of observed data, g(x) is
predicted data vector and f(x) is the objective
function.

Defining the objective fuction f(x)

Parameters initialization (starting point) X

Defining constriants (X< X< X,)

> Derivatives calculations (numerically or analytically)

Solution of Karush-Kuhn-Tucker (KKT) equations
Based on nonlinear programing thechniques
(Calculations of ai and d, by QP algorithm)

Updating parameters X, ; = X + o, dy

Stopping criteria
|f(x)|<Tolerence

Werite or plot the results

Figure 1. Flowchart of the non-linear constrained optimization algorithm.
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When a small damping factor is chosen,
most weight for minimization will be
assigned to the first term (show unfitness
between observed and calculated data)
that may cause to an unreasonable model.
However, when a large value is chosen for f3,
most weight will be assigned to
the minimization of the second term
(damping term), and this itself causes to a
smooth model (without detail).
Use of the second term called damping
term causes the inverse problem be more
stable, and the results also physically be
more reasonable. Using the second term
or damping term limits the searching space of
model parameters and reduces under-
determinacy part of the inverse problem.
Despite these, the inverse problem becomes
more  resistant  against the  noise.
Of course, there is a variety of manners
for selecting B coefficient of the damping
term or even different forms for the second
term.

3. Inversion by Synthetic Data

3.1. Selective Synthetic M odel

In order to specify the advantages and
weaknesses of the method,
as it is prevalent, the methodology should
be examined by an obtained synthetic data of
a theoretical model. For this reason,
a relatively complex 2-D model has been
designed. Assume that a sedimentary basin
consisting of homogeneous sediments and
basement can be modeled by a set of
the elementary sources. A finite region of
the x-z plan, containing entirely the basin,
is discretized into M juxtaposed, 2-D prisms
whose tops are at the earth’s surface.
The thicknesses of the prisms are the
parameters to be estimated from the gravity
data. Besides, for simplicity, the density
contrast between the sediments and the
basement is assumed to be kept constant and
known. The only parameters to be estimated
(thicknesses of elementary prisms) are
related to the gravity field by the nonlinear

relationship (Equation 2 or 3). The
considered synthetic model (Figure 2.a) is
formed by 40 elementary prisms, which
approximate a sedimentary basin whose
density contrast with the basement is
considered constant (-0.5 g/cm3). The model
length is 30 km and the maximum depth
of the sedimentary basin or depth of
the basement is considered 4.5 km. The
gravity effect of this synthetic model is
calculated using Equation (3) and depicted in
Figure 2.b.

As it can be seen in Figure 2.b, the length
of the survey data or profile is about 30 km,
the number of data point is 110, and the
distance between measured points is taken
0.3 km.

3.2. Inversion of Synthetic Gravity Data
The synthetic data has been inverted using
the  nonlinear  constrained  inversion
algorithm. The dependency of the objective
functions on model parameters (here are
depth of 2-D elementary prisms) is a
nonlinear one. Since the problem is
nonlinear, it needs some iteration to optimize
initial defined model parameters.

To begin the inversion, it is needed to define
an initial model composed of some model
parameters. In this case, the number of model
parameters selected are equal to those used
for constructing synthetic model, meaning
40. Thus, in this case, the initial model was
constructed from 40 prisms whose tops were
selected at the surface and bottoms at depth 2
km. It means that the initial model was a flat
model at depth 2 km. Lower and upper
bounds considered for the inversion were 0
and 5 km, as the constraints for the model
parameters during the procedure of the
optimization. These were the only constraints
used for the inversion.

In this section, we want to examine the effect
of the noisy data on the inversion result. To
do this, some Gaussian noise (about 5%) was
added to the data so that the standard
deviation error was about 2.4 mGal.
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Synthetic Model (M= 40)
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Figure 2. Designed synthetic model composed of 40 elementary prisms whose bottoms make interface between basement
and sediments (a). Gravity response of the synthetic model (b).

In order to have better criteria for stopping
iterations of the inversion, the objective
function is defined in the form of standard
deviation or Root Mean Square error as
defined in Equation (14). The results of the
inversion are shown in Figure 3.

In procedure of the inversion, the initial value
of standard deviation was about 8 mGal that
after 9 iterations reached less than 2.4 mGal.
The convergent rate of the inversion was also
rather fast, because just after 9 iterations, the
objective function reached below the
minimum value. Looking at in (Figure 3.a),
it is observed that the inverted model is really
similar to the original model (Figure 2),
and there is also no instability in the model
(even in the borders). Comparison of
the gravity model response with that of
the synthetic noisy data is shown in (Figure
3.b); the effect of the Gaussian noise in the
form of undulations can also be seen on the

figure.

As shown, there is a good adjustment
between the gravity response of the model
and the part of free-noise observed data. This
means that the noise has roughly less role in
the optimization, and the original model that
has been reproduced with a good
approximation. As a result, it can be said that
the applied method used for the inversion is
relatively resistant against the noise, as if the
effect of noise is not so tangible in the
inverted model.

4. Real Gravity Data Inversion

4.1. Geology Setting

The sediment basin of Aman Abad area is
located in south part of desert Mighan
(Figure 4). In this region, the highest place is
assigned to the mountain of Haftad Gholeh
with a height about 2720 m and the lowest
one to Lake of Mighan desert about 1660 m.
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Inverted Model from Synthetic data (M= 40)
10 15 20 25
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0 10 20 30 40
0
-10
< -20
[ ¥
2 -30 ——Origional data
g -40 —+— Calculated data
[
5 -50
-60
-70

Distance (Km)

Figure 3. Result of the inversion of synthetic noisy gravity data (a), comparison of the observed and calculated gravity

data (b).

According to the  geological and
classification of Iran, a major part of the
Aman Abad area is located in the Sanandaj-
Sirjan zone, and a partial part of it is also
located in subzone of Haftad Gholeh. The
Tabateh and Talkhab, big faults in this area,
have general northwest - southeast trend that
is the same as that of Zagros main trend.
Most of the sedimentary of this area includes
limy slate in Cretaceous period. Some of the
intrusion formations which
made granodiorite rocks in this area
have also penetrated in these limes. The
movement of Laramide Orogeny has caused
some folds, transformation, upductions and
magma intrusions. In the effect of this
movement, limes of Cretaceous period have
been shaped in slate form. In addition to the
faults, there are many fractures with seams
and cavities in the formations that provide
the main resource of the underground water
for Arak plain.

4.2. Modeling of the data

The proposed method was applied to the
gravity anomaly of Aman Abad basin to
determine the relief of interface separating
two homogeneous media, sediments and
basement. The same as synthetic case, upper
medium is discretized into rectangular,
juxtaposed prisms whose thicknesses
represent the depths to the interface and are
the parameters to be estimated from the
gravity anomaly data inversion. The density
contrasts of all prisms are assumed to be
constant and known.

As gravity anomaly has some components
influenced by the regional trend, regional
anomaly has also been determined and
removed from the measured data.

The survey of real gravity data in Aman
Abad area has been done by gravimeter of
type CG3, SCINTREX, (automated
gravimeter of Institute of Geophysics of
University of Tehran), along six profiles A,
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B, C, D, E and F orienting western-eastern. The number of total data is 259, which are
The accuracy of the gravimeter is about distributed on the profiles. In Figure 5, the
0.005 mGal and fortunately, this device position of profiles is shown on topography
itself, does tidal correction automatically. contours map of the area.
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Figure5. Position of the gravity profiles on the topography contours map.
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The distance between measurement points is
about 60-80 m, the distance between profiles
is about 250 m, and total area of the survey
zone is about 5 km”.

In order to get gravity anomaly data for the
inversion, different corrections have been
performed on the raw data and the trend is
calculated and reduced from the corrected
data.

By fitting the observed data with orthogonal
and orthonormal polynomials that are
independent functions, the regional trend
effect of the data was calculated.

Then, residual data were obtained by
reducing the calculated regional effect from
the observed data (Sarma et al, 1990).

The cause of using mentioned polynomials
rather than ordinary ones is that a set of
linear equations formed from them that will
not be ill-conditioned, and convergence rate
of this method is more than the least squares
approximation techniques. Thus, using this
method for calculating trend coefficients will
be more efficient than the ordinary least
squares techniques (Sarma et al, 1990).
Selecting the number and order of these
polynomials for calculating regional effect
was formed by using the F test statistical
analysis (Sarma et al, 1990). Concerning the
mentioned statistical analysis, polynomials of
order 3 were considered for calculating the
effect of the regional trend. Calculated 2-D
Bouguer gravity anomaly (residuals) map of
the area has been depicted in Figure 6.

Due to lack of the space here, only data
inversion results of some selected profiles
will be presented in the following.

4.2.1. Inversion of Gravity Data from
Profile A

There are about 41 survey data on this
profile, oriented east-western. For inversion
of this gravity anomaly data, as the number
of data is rather low, three types of
parameterizations have been made:

1) Over-determined, 2) Even-determined,
3) Under-determined

1) Over-deter mined

Here, a model consisting of 15 prisms that
their upper height show horizontal surface
and their lower height show the interface
between sedimentary and bedrock, have been
considered. The positions of some drinking

water wells in this area are shown in Figure
7. Excavated depths of these wells are
different. They have been excavated as far as
they fulfill the need for water and some of
them reach the bedrock. Sediments thickness
of wells number 4 and 15, which have
reached the bedrock are about 140 m. Depth
of other wells are about 100 m and have not
excavated to the bedrock depth yet.

From information of the dug wells in this
area, the maximum depth of the sediments or
maximum depth of the bedrock was
considered to be about 200 m for doing all
real data inversions. Thus, the average depth
of the sediments for all inversions was
considered about 100 m. Based on this
information, the upper and lower bound for
sediments thickness for the inversions have
been considered 0 and 200 m. For this case,
model parameterization was performed in a
way that the number of data is greater than
those of model parameters (over-
determined). = The  objective  function
considered for this case was that of defined in
Equation (14). The density contrast between
bedrock and sediments was obtained based
on some gathered downhole data in this
region. The lithologic descriptions of well
number 4 and 15 are shown in Table 1. In the
table, observed lithology intervals for each
borehole are indicated. The lithology
materials of the sediment intervals are
composed of clay, sand, gravel and cobble,
with different percentage at different depths.
As mentioned in the table, bedrock material
is schist. Density contrast between the
sediments and the bedrock was estimated
about 0.5 g/cm’. This was considered
constant during the optimization procedure
and only lower depths of the prisms have
been changed. The result of this inversion is
shown in Figure 8.

Decreasing rate of the objective function was
fast, after 15 iterations, its value reached
0.019967 mGal. The depth of the
sedimentary basin increases from west to
east, and in the center, it reaches the
maximum (about 200 m), including also an
uplift (Figure 8.a). The gravity response of
the inverted model and observed data are
depicted in Figure 8.b. As shown, the
agreement between two data sets is
reasonable except in the east, due to the side
effect and result of incomplete survey data
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along this profile. the model. In this case, the considered
model approximated by 40 rectangular
prisms  whose lower depths shape

2) Even-determined

Profile A

To examine the efficiency of the method, a
finer parameterization was considered for

N (m)

S

S-N(m)

3767500

3767000

3766500

the geometry of the basement along this
profile.
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Figure 6. 2-D Bouguer gravity anomaly (mGal) together with the position of the stations and the profiles.
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Table 1. Lithology types tables of well number 4 and 15 from the gathered downhole data.

Lithology of well number 4

Interval Materials name Materials percentage Interval depth(m)
number

1 Soil 100 0-5

2 Clay- Gravel - Sand 50-30-20 5-30

3 Clay- Gravel -Sand- Cobble 30-30-20-20 30-80

4 Clay- Gravel -Sand- Cobble 25-25-25-25 80-110

5 Clay- Gravel -Sand 50 -30- 20 110-120

6 Marl 100 120 -140

7 Schist 140

Lithology of well number 15

Interval Materials name Materials percentage Interval depth (m)
number

1 Soil 100 0-5

2 Clay- Gravel -Sand 30-35- 35 5-30

3 Cay- Gravel -Sand 50-25-25 30-50

4 Clay- Gravel -Sand- Cobble 35-20-20-25 50 -50

5 Clay- Gravel -Sand- Cobble 40-20-20-20 90 -115

6 Clay- Gravel -Sand- Cobble 60 -15-15-10 115-130

7 Schist 130

By selecting this parameterization, inverse
problem becomes underdetermined. This
may make some instability in the model
during the process of the optimization. The
inversion result using the mentioned
objective function (Equation (14)) is shown

The decreasing rate of the objective function
was also fast, after 40 iterations its value
reached 0.0022436 mGal. The geometry of
the bedrock shows an unreasonable geology
feature, especially in the east (right side) that
indicates some instability in the model

in Figure 9. (Figure 9.a).
Inverted Model from real data profile A (NM= 15)
0 0.5 1 1.5 2 25 3
0 e " -
0.05
g 0.1
f 0.15
g 02
025 §
03 1
Distance (Km)
(a)
Origional and calculated data from inversion
0 0.5 1 15 2 25 3 35
0
0.5
T 4
5 15 ~——Origional data
£z 2 —s—Calculated data
g 2.5
-3
3.5
Distance (Km)
(b)

Figure 8. Produced model (15 model parameters) from the inversion (a) and gravity response of the inverted model

together with the real gravity data (b), along profile A.
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Although the agreement between gravity
response of the inverted model and the
observed data is good (Figure 9.b), due to the
existence of inherent non-uniqueness of
inverse problems, the resulted unstable model
is not often reliable in geological sense.

ProfileB

Now, for making stability in the inversion, a
new objective function that consists of two
terms was used: first, the minimization of
error vector length of data; second, the
minimization of the model parameters vector
length that can be defined with variety forms
(Equation 15).

As mentioned before, there is a variety of
manners for selecting 3. Here, the value 0.2
is assigned to the damping coefficient 3, for
the inversion. Results of the inversion are
shown in Figure 10.

The minimization rate of the objective
function was rather fast, and after 40
iterations, its value decreased to 0.85115.

As shown, we could control the previous
instability and produce a model that is
geologically reasonable. Uplift in the central

part of the model can be seen; however, the
observed instabilities have been eliminated
and any unexpected undulation in this model
is not observable. There is a good agreement
between the gravity model response and
measured data. The partial unfitting in central
part may be because of existing noise or due
to the smoothness or damping.

3) Under-deter mined

To show that the defined objective function
is consisted of two terms (Equation 15)
which can handle underdetermined inverse
problems, the data of profile A, when the
number of data is less than that of model
parameters (under-determined problem), was
also inversed.

For this case, this time, the model is
constructed of 60 parameters and the
same previous 41 data. As before, the initial
model which was chosen a flat one at depth
100 m had changed between 0 and 200 m
during the optimization procedure. For this
case, damping coefficient 3, was assigned
0.2. The result of this inversion is shown in
Figure 11.

Inverted Model from real data profile A (NM= 40)
0 0.5 1 1.5 2 25 3
0 =
O o 36 gp 2 )
0.05 4
3 0.1 3
= ]
= 0.15 E
§ 0.2 1
0.25 1
0.3 1
Distance (Km)
(a)
Origional and calculated data from inversion
0 05 1 15 2 25 3 3.5
0
-0.5
T 4
2 -15 —— Origional data
% -2 —=—Calculated data
&5 25
-3
-3.5
Distance (Km)
(b)

Figure 9. Produced model (40 model parameters) from the inversion (a) and gravity response of the inverted model

together with the real gravity data (b), along profile A.
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Inverted Model from real data profile A (NM= 40)
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Figure 10. Produced model (40 model parameters) from the inversion using damping term (a), and gravity response of
the inverted model together with the real gravity data (b), along profile A.

The decreasing rate of the objective function in the east side. There is a rational adjustment
was rather fast, and after 60 iterations, its between the gravity response produced of
value has reached 0.1236. As shown in this model and the observed data, as shown
Figure 11.a, the geometry of sedimentary in Figure 11.b.
basin is almost like the previous ones, except
Inverted Model from real data profile A (NM= 60)
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Figure 11. Produced model (60 model parameters) from the inversion using damping term (a), and the gravity response
of the inverted model together with the real one data (b), along profile A.
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It should be noted that, in the under-
determined cases, each model parameter is
estimated as a combination of its neighboring
parameters. This is the nature of this kind of
inverse problems. By doing this inversion, it
has been shown that this method would be
suitable for both the over and under-
determined cases.

422 Inversion of Gravity Data from
ProfileC

Collected data along this profile has almost a
west — east direction that roughly pass
through the center of the anomaly (Figure 6).
The number of data along this profile is 45,
with maximum anomaly of about 3.5 mGal.
Inversion of this data was implemented by
choosing an initial flat model at the depth of
100 m, consisting of 20 parameters. This
parameterization was chosen to take
advantage of the over-determined condition
for the inverse problem. It is clear that
choosing this model parameterization did not
need to use the objective function that
consists of damping term. Thus, optimization
procedure was performed using a simple
objective function such as Equation (14).
Results of this inversion are shown in Figure

Journal of the Earth and Space Physics, Vol. 43, No. 4, Winter 2018

12.

The decreasing trend of the objective
function was fast, after 20 iterations its value
reached 0.0075562. The maximum depth of
the sediments is about 200 m (Fig. 12.a).

To investigate the dependency of the
inversion results on choosing different initial
models, in this case, the inversion was also
implemented by considering an initial model
at depth 1000 m. The used initial model was
not only chosen outside the defined bounds
(0 - 200 m), but also chosen 10 times greater
than the considered average depth (100 m).
The model from this inversion is also shown
together with the model from the previous
inversion (Figure 12.a). Gravity response of
these two models is also depicted with
corresponding observed gravity data in
Figure 12.b. As can be seen in the figures, the
two models and two data sets from the two
inversions have a good agreement with each
other. This fact could be shown for all
inversions; however, due to the lack of the
space here, only one of them is presented.
Results of this investigation show that the
inversion method is less dependent on
choosing the initial model in a reasonable
range.

Inverted Model from real data profile C (NM= 20)
0 1 2 3
) Lk .
Well 4

E -0.05 =¢—Initial model at depth

x 0.1 Km
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Origional and calculated data from inversion
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3 a . r Km)
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Figure 12. Produced model (20 model parameters) from the inversion (a), and the gravity response of the inverted model
together with the real one data (b), along profile C.
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In this figure, observed sudden variations in
depths of the interface in the model can be
interpreted as fault, such as in horizontal
positions about 1.2 km. In this inversion, the
number of the data was about three times of
that of the model parameters. In this way, a
good constraint is implemented on the
inversion by data. Thus, the resultant model
is reliable and any instability cannot be seen
in the model. As shown in Figure 12.b, a
good fit is observable between gravity
responses of the model with the measured
data along this profile.

The nearest well to this profile is well
number 4 whose approximate position is
shown on the profile (Figure 12.a). As it can
be seen, at this position, the thickness of the
sediments from the inverted model is about
120 m, which is roughly less than the depth
of the well which is 140m (Table 1). The
cause of the difference is that the thickness of
sediments to the north direction and to the
anomaly center should increase (see Figure
6).

It is necessary to mention that the results of
the inversions from other data profiles and
different parameterization, such as those used
for data profile of A and C are not shown
here due to the lack of the space.

5. Conclusions

In this study, a 2-D model composed of a set
of juxtaposed prisms whose lower faces were
considered as unknown model parameters
that approximated the geometry of a
basement. Synthetic and real gravity data
were inverted using a nonlinear inversion
technique and an optimization procedure.
Density contrast between sediments and
basement was taken known for the inversion.

Results of the inversion of both synthetic and
real data showed that this method has a
noticeable efficiency and flexibility in
inverting data. The results also show that this
method is able to map the geometry of
sedimentary basins, detecting features such
as uplifts and faults, using inverting gravity
data, which have many practical applications
in the earth science branches. Delineating the
thickness of the sediments in the basin is also
one of the key factors for exploring water
potentials in the area and detecting fractures.

Finally, it should be mentioned that each
inversion method has its advantages and

weaknesses that depend on for what
geophysical problem in hands is used. The
method used here for solving a practical
problem in gravity, means estimating
geometry of basin interface from the
measured gravity data, that maybe
approached using other nonlinear inversion
techniques. Some of them are referred in the
introduction part, but some advantages of
using this method can be pointed out as
follows:

a) There is flexibility on choosing the
objective function for the inversion, in
procedure of the nonlinear optimization
(depending on the problem conditions).

b) Handling under-determined and over-
determined inverse problems.

c) Using partial derivatives analytically (if
possible) or numerically for the inversion.

d) Introducing different constraints for the
inversion, in the form of upper or lower
bounds or introducing them in the form of
equations.

e) The inversion technique used is less
dependent on choosing the initial model in a
reasonable range.

f) Basic algorithm of nonlinear optimization
is simple for programming and does not need
to write a complicated program.
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