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Abstract 

A constrained nonlinear optimization method based on nonlinear programming techniques has 
been applied to map geometry of bedrock of sedimentary basins by inversion of gravity anomaly 
data. In the inversion, the applying model is a 2-D model that is composed of a set of juxtaposed 
prisms whose lower depths have been considered as unknown model parameters. The applied 
inversion method is a nonlinear one, which minimizes the objective functions by definition of 
different objective functions and an initial simple model to improve the initial model parameters. 
In this study, for different cases, sufficient objective functions are defined based on the condition 
which is encountered in the inverse problem. To control the under- determinacy part of the inverse 
problem and to prevent unreasonable instability in the resultant model, damping terms are added to 
the objective function. The act of synthetic inversion for different cases of parameterization has 
been examined and the results are analyzed. The results have almost depicted the recovery of the 
model and also fitting of the original and model response data. In addition, the method has been 
used to invert real gravity data in Aman Abad area. From the inversion results, depths of the basin, 
features like fractures and uplift in bedrock, along specific profiles have been determined. Thicker 
parts of sediments in the basin along the profiles have also been recognized, which have the 
potential for exploring drinking water in this area.  
 

Keywords: Optimization, Objective function, Geometry of bedrock, Inversion, Constrains, 
Gravity data.  

 
1. Introduction 
To map the sediment thickness and bedrock 
topography, there have been various methods 
in recent years by which we can find many 
applications for these types of mapping in 
subsurface geological investigation such as: 
geotectonic, modeling groundwater flow, 
exploring petroleum, studying ice stream 
flow and modeling ground motion 
amplification during an earthquake in a 
sedimentary basin. It is known for certain 
that the basis of understanding of a ground 
water system in a valley or determining a 
major faulting system depends on sediment 
thickness and bedrock topography 
(Annecchione et al., 2001; Schaefer, 1983). 
If interface intersects any vertical line only 
once (Smith, 1961) and the gravity anomaly 
is known to exist in a continuous way with 
infinite precision, mapping the depth to an 
interface, separating the two homogeneous 
media will be considered to a nonlinear 
problem with a unique solution. The 

knowledge of the discontinuous relief of a 
sedimentary basin could also lead to locating 
oil structural traps, to be of combination with 
the discontinuity (Silva et al., 2010). Because 
of the higher density (higher seismic 
velocity) of bedrocks than that of sedimental, 
alluvial, or volcanic deposits, seismic waves 
can be trapped and thus amplified, resulting 
in disastrously large ground motion and 
extended earthquake duration. The 
Knowledge of a subglacial sediment can be 
efficiently used to understand the dynamic 
evolvement of the ice streams in Polar 
Regions (Bell et al., 1999; Studinger et al., 
2001). 
In practice, these last conditions are never 
fulfilled making the solutions become 
unstable. Therefore, there are methods 
designed to solve this problem, which 
introduce an a priori information to stabilize 
the solutions (Burkhard and Jackson, 1976; 
Pedersen, 1977; Richardson and MacInnes, 
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1989). Stabilizing the problem condition can 
also be accomplished by limiting the parameter 
corrections at each iteration, using, for 
example, a parameter covariance matrix 
(Burkhard and Jackson, 1976; Richardson 
and MacInnes, 1989) or abandoning 
eigenvalues smaller than a threshold one in a 
generalized inverse approach (Pedersen, 
1977). 
The clear former information required by 
these methods can be a good guess for the 
thicknesses of the upper medium and the 
knowledge of the density contrast between 
the media. 
Oldenburg  and Pratt (2002) developed  
an iterative method based on Parker’s 
expansion of the gravity anomaly into a 
power series of the function representing the 
interface in the wave number domain 
(Parker, 1973). Parker’s formula was 
represented in a noniterative inversion by 
Guspi (1993), expressing it as a power series 
expansion in the reciprocal of the density 
contrast. 
In Granser’s method, the kernel of the 
nonlinear integral equation relating the 
gravity anomaly to the interface relief  
is expanded in Taylor’s series with  
the coefficients of the inverse series obtained 
from the coefficients of the original series 
(Granser, 1987). If the low-pass filter is 
applied to the observed anomaly, these 
methods stabilize the solutions, with a cutoff 
frequency designed to guarantee the 
convergence of the series. The lower cut-off 
frequency and the low order of the 
expansion, result in a stable inversion,  
the more stable solutions and the smoother 
estimated interface. The only clear former 
information necessary to be taken into 
account is the density contrast between  
the two media and the interface average 
depth. Successive approximations of the 
interface were obtained by computing  
the residual associated relief between  
the observed and the computed anomaly 
using the current approximation for the 
interface at each iteration. Added to the 
previous approximation is the residual 
topography (Courtillot et al., 1974; 
Pilkington, 2006).  
In these methods, at each iteration either an 
integral equation (Courtillot et al., 1974) or a 
matrix equation (Pilkington and Crossley, 

1986) is solved, being equivalent to 
continued observed anomaly to some level 
below the surface. The stabilizing procedure 
is therefore reduced, to stabilize the 
downward continuation procedure, in the 
matrix formulation of Pilkington and 
Crossley. 
Two inversion methods can be used to 
determine the bedrock topography and 
probable discontinuities. Inversions can be 
performed manually by adjusting the 
geologic model manually, or automatically 
using an optimization algorithm. Barbosa, 
Silva, Oldenburg and Pratt did review 
different methods (Barbosa et al., 1999; 
Oldenburg and Pratt, 2002). 
Fourier method was the basis of several 
algorithms using Parker’s formula (Li, 2010; 
Parker, 1973; Pilkington, 2006). The 
implementations take advantage of the rapid 
forward calculations of gridded data via the 
Fast Fourier Transform (FFT) while forming 
the backbone of several commercial software 
products. Methods based on Parker’s formula 
(computing the gravity effect of an arbitrary 
interface separating two homogeneous 
media) that stabilize the solutions either by 
applying a low-pass filter to the data or by 
using a damping parameter, implicitly 
introduce an a priori information in which the 
interface is smooth. The lower the cutoff 
frequency or the larger the damping 
parameter, the smoother the computed 
interface is. 
Gravity inversion corresponds to a linear 
(density unknown) or nonlinear (geometry 
unknown) inverse problem depending on  
the model parameters. Among the nonlinear 
techniques, inversion of basement relief  
of sedimentary basins is an important 
application which remains to be considered. 
A common way to approach this problem 
consists of discretizing the basin using 
polygons (or other geometries), and 
iteratively solving the nonlinear inverse 
problem by local or global optimization. 
Nevertheless, this kind of approach is highly 
dependent on the prior information used and 
lacks a correct solution appraisal (nonlinear 
uncertainty analysis). When the geometry  
of the bodies is unknown, there will be made 
some assumptions about the values of  
the corresponding densities. Among  
the nonlinear techniques, the inversion of 
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basement relief of a sedimentary basin is  
a relatively common task (Barbosa et al., 
1999; Blakely, 1996; Chakravarthi and 
Sundararajan, 2007; Zhou, 2013).  
Nonlinear gravity inversion of basement 
relief in sedimentary basins can be 
considered as a 2D or 3D problem depending 
on the model conceptualization. The 2D  
case is seen to be very common, consisting of 
the inversion of one or different profiles 
across the basin, generally with its maximum 
depth.  
A nonlinear optimization is the classical way 
to tackle this problem, where the unknowns 
are the depth of the basement at certain 
locations, or the depth and some additional 
parameters to take into account the density 
variations of the sediments with position. As 
inverse problems are being more complicated 
in the real world, it is a need to use better 
optimization algorithms. Almost in all 
optimization problems, the goal is to find 
minimum or maximum of an objective 
function. Today, different researchers in the 
field of computer science, mathematics and 
physics seek to invent new methods, make 
more compatibility and harmony in inversion 
method. In this regard, getting solutions of 
the inverse problems can be achieved by 
optimizing methods where an objective 
function, including parameters that describe 
the model in the nature, can be defined. In 
using optimizing methods, the parameters 
will be estimated when an objective function 
can be minimized. 
This paper has applied an inversion technique 
in gravity and for a problem, by defining 
different objective functions, including 
parameters which describe the models. In  
this work, a constrained nonlinear 
optimization method for gravity data 
inversion has been used where linear or 
nonlinear constraints can be considered to 
model parameters.  
In this study, the subsurface is also divided 
into rectangular prisms while iterative 
nonlinear optimization technique is used to 
estimate the thickness of elementary prisms 
that approximate the sedimentary basin 
geometry.  
 
2. Inversion Methodology 
2.1. Forward Model 
Forward model is considered for the 

inversion is a 2-D model. The 2-D model  
in x-z plane can be divided into M 
rectangular prisms which approximate a 
sedimentary basin. Density contrast between 
sedimentary and its bedrock will be 
considered constant. Effect of vertical 
component of gravity (g) of one of these 
prisms in one observation point with position 
(x0, y0), on the surface earth, can be 
calculated by the following relation (Plouff, 
1966): 
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where K is the universal constant of 
gravitation,  is density contrast, r0 is vector 
distance from the observed point to origin 
and r is vector distance from the origin to a 
point of anomalous body (prism). After 
integration, the gravity effect of one of the 
prisms at one observation point is shown 
below (Plouff, 1966): 
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where x1, x2, z1, z2 are the bounds of prism. 
Usually, n layers and n-1 interfaces are 
considered. Each layer includes M prisms 
that lower bound will estimate interface 
between the layers. Each layer and each 
prism number is shown by index i and j 
respectively. Therefore, the effect of these M 
prisms in an observation point can be 
estimated by adding the gravity effect of all 
prisms. Considering that the density contrasts 
in one layer for all prisms are equal, the 
following relation is arranged for 
programming purposes from the above 
equation: 
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where g is the gravity effect of all prisms in a 
measured point. In other words, the gravity 
effect of these prisms in each layer, with a 
constant density for a layer that can 
approximate the gravity effect of a 
sedimentary basin. For a two layers model, 
the value of n is set to 2. 
 
2.2. Constrained Nonlinear Optimization 
Method 
2.2.1. Optimization Theory Overview 
Optimization techniques are used to find a set 
of design parameters, x = [x1, x2, ..., xn] that 
can, in some way, be defined as optimal. In a 
simple case, this might be the minimization 
or maximization of a characteristic system 
that is dependent on x. In a more advanced 
formulation, the objective function, f(x), to 
be minimized or maximized, might be 
subject to constraints in the form of equality 
constraints, Gi(x) = 0 ( i = 1,...,me); inequality 
constraints, Gi( x) ≤ 0 (i = me + 1,...,m); 
and/or parameter bounds, xl, xu (lower and 
upper bound). 
A General Problem (GP) description is stated 
as: ܠܖܑܕ  (4)                                                     (ܠ)܎

Subject to ۵ܑ(ܠ) = 	૙, ܑ = ૚,… (ܠ)۵ܑ (5)                               ,܍ܕ, ≤ 	૙, ܑ = ܍ܕ + 	૚,… ܔܠ (6)                       ,ܕ, < ࢞ <  (7)                                                 .ܝܠ
 

where x is parameters vector with length n, 
f(x) is the objective function, which returns a 
scalar value, and the vector function G(x) 
which returns a vector of length m containing 
values of the equality and inequality 

constraints evaluated at x. An efficient and 
accurate solution to this problem depends not 
only on the size of the problem in terms of 
the number of constraints and design 
variables, but also on characteristics of the 
objective function and constraints. When 
both the objective function and the 
constraints are linear functions of the design 
variable, the problem is known as a Linear 
Programming (LP) problem. Quadratic 
Programming (QP) concerns the 
minimization or maximization of a quadratic 
objective function that is linearly constrained. 
For both the LP and QP problems, reliable 
solution procedures are readily available. 
More difficult to solve is the Nonlinear 
Programming (NP) problem in which the 
objective function and constraints can be 
nonlinear functions of the design variables. A 
solution of the NP problem generally requires 
an iterative procedure to establish a direction 
of search at major iteration. This is usually 
achieved by the solution of an LP, a QP, or 
an unconstrained subproblem. 
 
2.2.2. Active Set Algorithm 
In constrained optimization, the general aim 
is to transform the problem into an easier 
subproblem that can then be solved and used 
as the basis of an iterative process. Solutions 
of this problem have focused on the solution 
of the Karush-Kuhn-Tucker (KKT) equations 
(Kuhn and Tucker, 1951). The KKT 
equations are necessary conditions for 
optimality for a constrained optimization 
problem. If the problem is a so-called convex 
programming problem, that is, f(x) and Gi(x), 
i = 1, ..., m, are convex functions; then, the 
KKT equations are both necessary and 
sufficient for a global solution point. Let x* 
be a local extremum point of function f 
subject to the constraints mentioned in 
Equations (5), (6) and (7). The Karush-Kuhn-
Tucker equations can be stated as: 
 સ(∗ܠ)܎ +	∑ ୀ૚ܕܑܑૃ . સ	۵ܑ(ܠ∗) = ૙                    (8) ૃܑ	. સ۵ܑ(ܠ∗) = ૙, ܑ = ૚,… ܑૃ (9)                      ܍	ܕ, ≥ ૙, ܑ = ܍ܕ + 	૚,…(10)                           ,ܕ 
 

In addition to the original constraints 
mentioned for function f(x), the first equation 
describes a cancellation of the gradients 
between the objective function and the active 
constraints at the solution point. For the 
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gradients to be canceled, Lagrange 
multipliers (λi, i = 1, ... , m) are necessary to 
balance the deviations in magnitude of the 
objective function and constraint gradients. 
Because only active constraints are included 
in this canceling operation, constraints that 
are not active must not be included in this 
operation and so are given Lagrange 
multipliers equal to 0. This is stated 
implicitly in the last two Karush-Kuhn-
Tucker equations. 
The solution of the KKT equations forms the 
basis to many nonlinear programming 
algorithms. These algorithms attempt to 
compute the Lagrange multipliers directly. 
Constrained quasi-Newton methods insure 
super linear convergence by accumulating 
the second-order information regarding the 
KKT equations using a quasi-Newton 
updating procedure. These methods are 
commonly mentioned as Sequential 
Quadratic Programming (SQP) methods, 
since a QP subproblem is solved at each 
major iteration, also known as Iterative 
Quadratic Programming (Hock and 
Schittkowski, 1983), Recursive Quadratic 
Programming (Biggs, 1973), and Constrained 
Variable Metric methods (Powell,  1983).  
 
2.2.3 Sequential Quadratic Programming 
(SQP) 
SQP methods represent the state of the art in 
nonlinear programming methods 
(Schittkowski, 1986). The method allows us 
to closely mimic Newton's method for 
constrained optimization just as is done for 
unconstrained optimization (Biggs, 1973; 
Han, 1977; Powell, 1978a, 1978b). At each 
major iteration, an approximation is made of 
the Hessian of the Lagrangian function using 
a quasi-Newton updating method which is 
then used to insure a QP subproblem whose 
solution forms a search direction for a line 
search procedure. A general review of SQP is 
found in -Fletcher, 2013; Gill et al., 1981;  
Powell, 1983; Schittkowski, 1986.  
Given the problem description in GP 
(Equation 4), the principal idea is the 
formulation of a QP subproblem based on a 
quadratic approximation of the Lagrangian 
function. 
,ܠ)ۺ  ૃ) = (ܠ)܎	 +	∑ ୀ૚ܕܑ	ܑૃ .  (11)              			.(ܠ)۵ܑ
 

If x* is a local extremum point of the 

objective function f, then Equation (11) can 
be used in the procedure of the minimization 
in the following cases: 
a) The constraint	۵ܑ(ܠ) = ૙, ܑ = ૚,…  .ܕ,
Assume that x* is a regular point of these 
constraints. Then, there is a  ࣅ	૓࢓ࡾ such that 
Equation (8) is satisfied, subject to the 
constraint. 
b) If me< m, a constraint Gi(x) is active at x* 
if Gi(x*) = 0, and it is inactive if Gi(x*) < 0. 
Note that all equality constraints are active. 
c) If x* is a local extremum point of function 
f subject to Equation (5) and (6). Assume that 
x* is a regular point of these constraints. 
Then Equation (8), (9) and (10) are held. 
The QP subproblem obtained by linearizing 
the nonlinear constraints. This subproblem 
can be solved using any QP algorithm. The 
solution of QP algorithm is used to form a 
new iterate ܓܠା૚ = ܓܠ + હ(12)                                      ܓ܌ܓ 

The step length parameter αk is determined 
by an appropriate line search procedure so 
that a sufficient decrease in a merit function 
is obtained and Xk and dk are estimated by 
QP algorithm. 
A nonlinearly constrained problem can often 
be solved in less iteration than an 
unconstrained problem using SQP.  
The reason for this is that, because of  
limits on the feasible area, the optimizer  
can make informed decisions regarding 
directions of search and step length. The 
process of nonlinear optimization that 
explained above is summarized and shown in 
Figure 1. 
For implementation of the above-mentioned 
method for the inversion, a Matlab toolbox 
algorithm, named optimization tools, 
constrained nonlinear minimization, has been 
used. 
 
2.3. Choosing Form of the Objective 
Function 
This method has flexibility of using different 
forms of the objective function. For over-
determined problem where the number of 
data is greater than that of model parameters 
and the inverse problem well-constrained by 
data and noise that has less effect on the 
instability of the inversion, the objective 
function can be chosen in one of the 
following forms: 
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When a small damping factor is chosen,  
most weight for minimization will be 
assigned to the first term (show unfitness 
between observed and calculated data)  
that may cause to an unreasonable model. 
However, when a large value is chosen for , 
most weight will be assigned to  
the minimization of the second term 
(damping term), and this itself causes to a 
smooth model (without detail).  
Use of the second term called damping  
term causes the inverse problem be more 
stable, and the results also physically be  
more reasonable. Using the second term  
or damping term limits the searching space of 
model parameters and reduces under-
determinacy part of the inverse problem. 
Despite these, the inverse problem becomes 
more resistant against the noise.  
Of course, there is a variety of manners  
for selecting  coefficient of the damping 
term or even different forms for the second 
term. 

 
3. Inversion by Synthetic Data    
3.1. Selective Synthetic Model 
In order to specify the advantages and 
weaknesses of the method,  
as it is prevalent, the methodology should  
be examined by an obtained synthetic data of  
a theoretical model. For this reason,  
a relatively complex 2-D model has been 
designed. Assume that a sedimentary basin 
consisting of homogeneous sediments and 
basement can be modeled by a set of  
the elementary sources. A finite region of  
the x-z plan, containing entirely the basin,  
is discretized into M juxtaposed, 2-D prisms 
whose tops are at the earth’s surface.  
The thicknesses of the prisms are the 
parameters to be estimated from the gravity 
data. Besides, for simplicity, the density 
contrast between the sediments and the 
basement is assumed to be kept constant and 
known. The only parameters to be estimated 
(thicknesses of elementary prisms) are 
related to the gravity field by the nonlinear 

relationship (Equation 2 or 3). The 
considered synthetic model (Figure 2.a) is 
formed by 40 elementary prisms, which 
approximate a sedimentary basin whose 
density contrast with the basement is 
considered constant (-0.5 g/cm3). The model 
length is 30 km and the maximum depth  
of the sedimentary basin or depth of  
the basement is considered 4.5 km. The 
gravity effect of this synthetic model is 
calculated using Equation (3) and depicted in 
Figure 2.b. 
As it can be seen in Figure 2.b, the length  
of the survey data or profile is about 30 km, 
the number of data point is 110, and the 
distance between measured points is taken 
0.3 km. 

 
3.2. Inversion of Synthetic Gravity Data 
The synthetic data has been inverted using 
the nonlinear constrained inversion 
algorithm. The dependency of the objective 
functions on model parameters (here are 
depth of 2-D elementary prisms) is a 
nonlinear one. Since the problem is 
nonlinear, it needs some iteration to optimize 
initial defined model parameters.  
To begin the inversion, it is needed to define 
an initial model composed of some model 
parameters. In this case, the number of model 
parameters selected are equal to those used 
for constructing synthetic model, meaning 
40. Thus, in this case, the initial model was 
constructed from 40 prisms whose tops were 
selected at the surface and bottoms at depth 2 
km. It means that the initial model was a flat 
model at depth 2 km. Lower and upper 
bounds considered for the inversion were 0 
and 5 km, as the constraints for the model 
parameters during the procedure of the 
optimization. These were the only constraints 
used for the inversion. 
In this section, we want to examine the effect 
of the noisy data on the inversion result. To 
do this, some Gaussian noise (about 5%) was 
added to the data so that the standard 
deviation error was about 2.4 mGal. 
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The distance between measurement points is 
about 60-80 m, the distance between profiles 
is about 250 m, and total area of the survey 
zone is about 5 km2. 
In order to get gravity anomaly data for the 
inversion, different corrections have been 
performed on the raw data and the trend is 
calculated and reduced from the corrected 
data. 
By fitting the observed data with orthogonal 
and orthonormal polynomials that are 
independent functions, the regional trend 
effect of the data was calculated. 
Then, residual data were obtained by 
reducing the calculated regional effect from 
the observed data (Sarma et al, 1990). 
The cause of using mentioned polynomials 
rather than ordinary ones is that a set of 
linear equations formed from them that will 
not be ill-conditioned, and convergence rate 
of this method is more than the least squares 
approximation techniques. Thus, using this 
method for calculating trend coefficients will 
be more efficient than the ordinary least 
squares techniques (Sarma et al, 1990). 
Selecting the number and order of these 
polynomials for calculating regional effect 
was formed by using the F test statistical 
analysis (Sarma et al, 1990). Concerning the 
mentioned statistical analysis, polynomials of 
order 3 were considered for calculating the 
effect of the regional trend. Calculated 2-D 
Bouguer gravity anomaly (residuals) map of 
the area has been depicted in Figure 6. 
Due to lack of the space here, only data 
inversion results of some selected profiles 
will be presented in the following. 
 
4.2.1. Inversion of Gravity Data from 
Profile A 
There are about 41 survey data on this 
profile, oriented east-western. For inversion 
of this gravity anomaly data, as the number 
of data is rather low, three types of 
parameterizations have been made: 
1) Over-determined, 2) Even-determined,  
3) Under-determined 
 
1) Over-determined 
Here, a model consisting of 15 prisms that 
their upper height show horizontal surface 
and their lower height show the interface 
between sedimentary and bedrock, have been 
considered. The positions of some drinking 

water wells in this area are shown in Figure 
7. Excavated depths of these wells are 
different. They have been excavated as far as 
they fulfill the need for water and some of 
them reach the bedrock. Sediments thickness 
of wells number 4 and 15, which have 
reached the bedrock are about 140 m. Depth 
of other wells are about 100 m and have not 
excavated to the bedrock depth yet. 
From information of the dug wells in this 
area, the maximum depth of the sediments or 
maximum depth of the bedrock was 
considered to be about 200 m for doing all 
real data inversions. Thus, the average depth 
of the sediments for all inversions was 
considered about 100 m. Based on this 
information, the upper and lower bound for 
sediments thickness for the inversions have 
been considered 0 and 200 m. For this case, 
model parameterization was performed in a 
way that the number of data is greater than 
those of model parameters (over-
determined). The objective function 
considered for this case was that of defined in 
Equation (14). The density contrast between 
bedrock and sediments was obtained based 
on some gathered downhole data in this 
region. The lithologic descriptions of well 
number 4 and 15 are shown in Table 1. In the 
table, observed lithology intervals for each 
borehole are indicated. The lithology 
materials of the sediment intervals are 
composed of clay, sand, gravel and cobble, 
with different percentage at different depths. 
As mentioned in the table, bedrock material 
is schist. Density contrast between the 
sediments and the bedrock was estimated 
about 0.5 g/cm3. This was considered 
constant during the optimization procedure 
and only lower depths of the prisms have 
been changed. The result of this inversion is 
shown in Figure 8. 
Decreasing rate of the objective function was 
fast, after 15 iterations, its value reached 
0.019967 mGal. The depth of the 
sedimentary basin increases from west to 
east, and in the center, it reaches the 
maximum (about 200 m), including also an 
uplift (Figure 8.a). The gravity response of 
the inverted model and observed data are 
depicted in Figure 8.b. As shown, the 
agreement between two data sets is 
reasonable except in the east, due to the side 
effect and result of incomplete survey data 
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In this figure, observed sudden variations in 
depths of the interface in the model can be 
interpreted as fault, such as in horizontal 
positions about 1.2 km. In this inversion, the 
number of the data was about three times of 
that of the model parameters. In this way, a 
good constraint is implemented on the 
inversion by data. Thus, the resultant model 
is reliable and any instability cannot be seen 
in the model. As shown in Figure 12.b, a 
good fit is observable between gravity 
responses of the model with the measured 
data along this profile. 
 The nearest well to this profile is well 
number 4 whose approximate position is 
shown on the profile (Figure 12.a). As it can 
be seen, at this position, the thickness of the 
sediments from the inverted model is about 
120 m, which is roughly less than the depth 
of the well which is 140m (Table 1). The 
cause of the difference is that the thickness of 
sediments to the north direction and to the 
anomaly center should increase (see Figure 
6).   
It is necessary to mention that the results of 
the inversions from other data profiles and 
different parameterization, such as those used 
for data profile of A and C are not shown 
here due to the lack of the space. 
 
5. Conclusions  
In this study, a 2-D model composed of a set 
of juxtaposed prisms whose lower faces were 
considered as unknown model parameters 
that approximated the geometry of a 
basement. Synthetic and real gravity data 
were inverted using a nonlinear inversion 
technique and an optimization procedure. 
Density contrast between sediments and 
basement was taken known for the inversion.  
Results of the inversion of both synthetic and 
real data showed that this method has a 
noticeable efficiency and flexibility in 
inverting data. The results also show that this 
method is able to map the geometry of 
sedimentary basins, detecting features such 
as uplifts and faults, using inverting gravity 
data, which have many practical applications 
in the earth science branches. Delineating the 
thickness of the sediments in the basin is also 
one of the key factors for exploring water 
potentials in the area and detecting fractures.  
 Finally, it should be mentioned that each 
inversion method has its advantages and 

weaknesses that depend on for what 
geophysical problem in hands is used. The 
method used here for solving a practical 
problem in gravity, means estimating 
geometry of basin interface from the 
measured gravity data, that maybe 
approached using other nonlinear inversion 
techniques. Some of them are referred in the 
introduction part, but some advantages of 
using this method can be pointed out as 
follows: 
a) There is flexibility on choosing the 
objective function for the inversion, in 
procedure of the nonlinear optimization 
(depending on the problem conditions). 
b) Handling under-determined and over-
determined inverse problems. 
c) Using partial derivatives analytically (if 
possible) or numerically for the inversion. 
d) Introducing different constraints for the 
inversion, in the form of upper or lower 
bounds or introducing them in the form of 
equations. 
e) The inversion technique used is less 
dependent on choosing the initial model in a 
reasonable range. 
f) Basic algorithm of nonlinear optimization 
is simple for programming and does not need 
to write a complicated program. 
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