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Abstract 

Interactions of charge particles with electromagnetic waves have important effects (linear and 
nonlinear) on the propagation of electromagnetic waves, and it can somewhat play a role in 
generation of the new mode waves. Besides, the particle energies can play an important role in 
causing instability in plasma. The values of parallel energy of the particles have been calculated so 
that they can satisfy the nonlinear coupling condition. Furthermore, a result for instability is 
presented and the initial parameters inferred from the observational data are used. The results show 
that the nonlinear coupling (particle-wave interaction) can be a candidate for the generation of RX 
mode wave in equatorial plasmasphere. Besides, the results show that energetic particles that 
participate in particle - wave interaction have an energy range from 0.058 to 10.23keV. This range 
of particle energy particle is in agreement with the observation. 
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1. Introduction 
Charge particles are a main component of 
plasma environments such as solar wind, 
magnetosphere, plasmasphere and 
ionosphere. It is well known that the particles 
energies have an important role in 
transporting energy and in causing instability 
in plasma. The interaction of an energetic 
electron with a background plasma and the 
instabilities associated with this interaction 
have a long history of investigation (Pierce, 
1948). Further, the particles can interact with 
electromagnetic waves, and somewhat this 
interaction can lead to the generation of the 
new mode waves. Lee et al. (1980) studied 
the amplification of electromagnetic waves 
via the cyclotron maser mechanism by a 
population of weakly relativistic electrons. 
They considered a low plasma frequency and 
found that the ordinary and extraordinary 
modes can be excited; Freund et al. (1983) 
applied that for the astrophysical plasma with 
different types of velocity distribution. By 
using a one-dimensional electromagnetic 
particle code with different values of the 
electron beam-to-plasma density ratio for the 
high density electron beams, Zhou et al. 
(1998) showed that these waves (high-
frequency electromagnetic waves) can be 
excited and the nonlinear effects will occur. 
Usui et al. (2001) studied the nonlinear 
wave/wave-particle interaction associated 

with the microwave power transmission in 
space plasma by performing one-dimensional 
simulation with the electromagnetic PIC 
model.  
Besides, energetic electrons with energies in 
the keV range are frequently observed in the 
equatorial plasmasphere and also, plasma 
waves are frequently observed in the 
equatorial plasmasphere. Based on 
simultaneous observations of plasma waves 
and energetic particles, it has been shown 
that electromagnetic waves are related to 
unstable particle distributions localized in 
equatorial regions (Kurth et al., 1980). 
Kalaee and Katoh (2015) simulations showed 
that electromagnetic Z- and RX-mode waves 
could be coupled by a nonlinear interaction, 
where the values of the parallel components 
of both two modes are the same. 
In this work, the nonlinear coupling 
condition was also focused on, but with a 
purpose that the values of the parallel 
components of both two modes are not the 
same. In this case, the values of parallel 
energy of the particles that can satisfy the 
nonlinear coupling condition were calculated. 
Furthermore, a result for the instability is 
presented by using the initial parameters 
inferred from observational data obtained by 
the Akebono satellite around the plasma-
wave generation region. 
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