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Abstract 
The time lapse gravity method is a widely used technique to monitor the subsurface density 
changes in time and space. In hydrocarbon reservoirs, the density variations are due to different 
factors, such as: substitution of fluids with high density contrast, water influx, gas injection, and 
the variation in reservoir geomechanical behavior. Considering the monitoring of saturation 
changes in the reservoir that cannot be inferred directly by seismic survey, a forward modelling 
followed by a sensitivity study is performed to examine that in what conditions the saturation 
changes are detectable by means of 4D gravity method in the understudy reservoir. Then static and 
dynamic models of a giant multi-phase gas reservoir are constructed. Then, synthetic gravity data 
are generated after variation of production time intervals and the number of production and 
injection wells. In addition to detecting the gravity signal for shallower reservoirs with similar 
characteristics to our reservoir, a sensitivity analysis was conducted for variation in depth of the 
reservoir. As either the depth of the reservoir decreases or the number of the production wells and 
production time periods increases, the produced gravity signal is more prone to be detectable by 
means of modern offshore gravimeters. The gravity signal could be detected with the maximum 
magnitude range of 9 -	40	μGal in different scenarios as a consequence of gas-water substitution, 
which is consistent with water drive support from surrounding aquifers. Therefore, this method is 
applicable for providing complementary and even independent source of information about the 
saturation front changes in the under-study reservoir. 
 

Keywords: 4D gravity, Water influx, Aquifer, Fluid saturation. 
 

1. Introduction 
The main objective of time-lapse (4D) 
gravimetry is to determine the spatio-
temporal changes of the Earth’s gravity field 
by implementation of repeated gravity 
measurements (Glegola et al., 2009). 
Nowadays, with advancements in data 
acquisition and data processing procedures, a 
μGal-level measurement precision is 
achievable (Glegola et al., 2009). 
On a local scale, variations in the gravity 
field can be caused by subsurface mass 
redistributions resulting from hydrocarbon 
reservoir production, reservoir and 
overburden deformation, water table changes, 
and substitution of fluids with each other due 
to factors such as natural causes, production 
and/or injections (Eiken et al., 2008; 
Stenvold et al., 2008; Tempone et al., 2012). 
Therefore, improved precision of 4D 
gravimetric observations have made it a 
potential technique to provide useful 
information about these phenomena changes 

in the reservoir. 
Recent feasibility studies on synthetic and 
real case studies have shown that time-lapse 
gravimetry is a potent monitoring technique 
to reveal valuable information on reservoirs, 
which contains fluids with high density 
contrast, such as: gas-water or steam-oil 
(Hare et al., 2008; Gelderen et al., 1999). For 
instance, Gelderen et al. (1999) showed 
gravimetric observations during 18 years of 
production (1978-1996) of the large 
Groningen gas field in the Netherlands. The 
gravity effect of mass extraction of produced 
gas could be detected. Ferguson et al. (2007) 
described the application of 4D gravity 
methodology for monitoring water injection 
in an arctic environment at the Prudhoe Bay 
reservoir located in Alaska. They came to the 
point that with the current technology the 
repeated surface gravity measurements can 
be applicable for water influx monitoring 
even for moderate-size gas reservoirs (∼ 23 
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2. Theory and methodology 
The total gravity change,	∆g୲୭୲ at an 
observation point	P଴(x଴, y଴, z଴), can be 
expressed as the sum of four terms (Tempone 
et al., 2012): ∆g୲୭୲(P଴)=	∆g୰ୣୱ+ ∆g୊୅ + ∆gୢୣ୤ + ∆g୵୲         (1) 

where ∆g୰ୣୱ is the change in gravity due to 
the fluid mass replacement in the reservoir 
formation, ∆g୊୅ is the change in gravity due 
to the change in ground elevation, ∆gୢୣ୤ is 
the change in gravity due to the subsurface 
deformation, and ∆g୵୲ is the change in 
gravity due to the change in height of the 
groundwater-table.  
In the present study, we put the spotlight on 
determination of gravity changes due to the 
fluid substitutions (the first term in the right 
hand-side of Equation (1)). 
 
2-1. Sensitivity assessment 
It is required firstly to have a rough 
perspective on the sensitivity of gravity 
monitoring for the reservoir under study. 
Depth, horizontal extension, and the density 
contrast between reservoir fluids play an 
important role in this context. By considering 
a cylindrical geometry for the reservoir, the 
gravity signal is calculated by (Stenvold et 
al., 2008): ∆g௥௘௦ = 2π∆ρGቌ1 − ଵටଵା౨మ౰మቍ h			               (2) 

where ∆g is the change in gravity on the axis 
of the cylinder at a height z above the center 
of the cylinder, ∆ρ is the change in density of 
the cylinder, h is the cylinder height, r is 
horizontal extension radius, and G	is 
Newton’s gravitational constant. According 
to Taherniya et al. (2013), the minimum 
magnitude of radius to depth ratio (

୰୸) for our 

reservoir is about 9 and the fluid density 

contrast is 884.327	 ௄௚௠య, hence using 

Equation (2) we can detect a gravity signal of 0.3	 ఓீ௔௟	௠  magnitude. Such magnitude can be 

easily detected by common gravimeters; 
therefore, the gravity technique could be used 
for monitoring fluid contact movements.   
 
2-2. Time lapse micro-gravity signal 
The z component of total time lapse gravity 

effect for a three-dimensional object in any 
(x,y,z) coordinate on the surface is calculated 
by (Sarkowi et al., 2005): 
 ∆g୸(x, y, z, ∆t) ׬    = ׬ ׬ ∆஡(஑,ஒ,ஓ,∆୲)(୸ିஓ)ሼ(୶ି஑)మା(୷ିஒ)మା(୸ିஓ)మሽయ మൗஶିஶஶିஶஶ଴ dαdβdγ   

  (3) 
 

where	∆g୸(x, y, z, ∆t), ρ = (α, β, γ) are time 
lapse microgravity at (x, y, z) and density 
mass distribution at any point of (	α, β, γ) in 
the target location, respectively.  
When the reservoir is discretized into finite 
blocks, the time lapse gravity anomaly which 
is denoted by ∆g୧୨,୩ at station j caused by a 
density change ∆ρ୧ in ith cell of the reservoir 
at the time k is expressed as (Stenvold et al., 
2008): ∆g୧୨,୩ = ୸౟ౠ∆஡ౘ,ౡ౟ ୚౟(୰౟ౠమା୸౟ౠమ )య మൗ G                                    (4) 

where z୧୨ is the vertical distance (depth), r୧୨ is 
the horizontal distance, V୧ is the cell volume, 
and G is the Newtonian gravitational 
constant. 
The bulk density changes of ith grid cell can 
be calculated as: ∆ρୠ,୩୧ = ρୠ,୩୧ − ρୠ,଴୧                                      (5) 

where  ρୠ୧ = ∅୧ρ୤୧ + ൫1 − ∅୧൯ρ୫୧ 				                        (6) 

where φ denotes the porosity, ρ୤ is the fluid 
density, and ρ୫ denotes the rock matrix 
density. 
For a three-phase system, the fluid density is 
determined from: ρ୤୧ = ρ୭୧ S୭୧ + ρ୥୧ S୥୧ + ρ୵୧ S୵୧                          (7) 

where S denotes saturation and subscripts o, 
g, and w represents oil, gas, and water, 
respectively. According to Equation (4), it is 
clear that the time-lapse gravity variation is 
proportional to bulk density changes. 
Therefore, with the higher porosity and 
higher difference in phase densities and 
saturation changes, a larger gravity variations 
would be expected. As a consequence, 
reservoir processes involving fluids with high 
density contrast (e.g., gas versus water) are 
potential targets for gravimetric monitoring. 
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3.3. Dataset calculations 
During gas production intervals, the reservoir 
pressure declines and the water influx  
from surrounding aquifer happens. As a 
result, after pressure decline the water- drive 
energy inclines to compensate the pressure 
drop. Therefore, the water saturation 
increases and as a consequence of high 
density contrast between gas and water, it 
would be expected to have positive gravity 
signal on the surface. The synthetic gravity 
data were calculated on a grid with 41*37 
cells wherein the data spacing was 696 m in 
the x direction and 649 m in the y direction. 
The reservoir was subdivided into 46376 
block cells (31*44*34 in x, y, and z 
directions). On each grid point on the 
surface, the gravity effect of each cell was 
calculated. Subsequently the accumulative 
gravity signal of all reservoir blocks was 
calculated by adding the effects of each cell. 
The base time for monitoring was set to year 
2000 with which the density variations and 
their corresponding gravity anomalies were 
compared.  
 
4. Results  
Three scenarios were contrived to investigate 
the changes in achieved gravity signals. The 
number of production wells, depth, and 
production time intervals vary amongst 
different scenarios.  
 
4-1. First scenario 
This scenario deals with 10 production  
wells and considers the depth of reservoir  
to be 3500 m. The time intervals of  
three gravity survey and the periods  
of production from the reservoir are 8,  
15, and 30 years started from 2000. Even 
though there is a large distance between  
the target and gravity acquisition data points, 
which is considered as a bottleneck  
in potential techniques, the maximum  
of acquired gravity signal for 15 and 30 years  
 

of production are 7 and 9 microgal 
respectively. These signals can be detected 
by state of the art offshore gravimeters. 
However, for eight years of production, the 
maximum of gravity signal is 4 microgal 
which is close to the noise threshold. In this 
scenario for 10 production wells (A, 
B,……..J), the gravity anomaly has been 
observed in N-E and South of the reservoir 
(Figure 3). 
Although the investigation was implemented 
on a specific reservoir, we have decreased the 
depth of reservoir to see the strength of 
gravity technique for the same shallower 
reservoirs. Moreover, three of production 
wells (A, H, and G) are deactivated for the 
second scenario.  
 
4-2. Second scenario 
This scenario deals with seven production 
wells and considers the depth of reservoir to 
be 2000 m. The maximum gravity signals for 
8, 15 and 30 years of production from the 
base time (ݐ଴ = 2000) are 11, 16, 20 
microgal. In spite of decreasing the distance 
between reservoir and surface, in comparison 
with previous scenario, the reduction of 
production wells caused the gravity signal to 
be opaque on the south of reservoir (Figure 
4).  
 
4-3. Third scenario  
In this scenario, the number of production 
well was not manipulated. However, the 
depth of reservoir was decreased to 1500 m. 
As demonstrated in Figure 5, the maximum 
of gravity anomalies for 8, 15, and 30 years 
varies between 30 to 40 microgal. 
Additionally, the resolution of signals has 
improved, and maximum gravity anomalies 
of 10 and 15 microgal were detected in East 
and South of reservoir respectively. Besides, 
the aforementioned gravity anomaly in the 
North of reservoir differentiated into two 
parts. 
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4.4 Discussions 
Time lapse microgravity modelling was 
tested over the giant gas field through 
different scenarios. As the production time 
and the number of the production wells 
increase, and the reservoir depth decreases, 
the gravity signal could be more detectable. 
Although we have done the sensitivity study 
on a specific reservoir, we consider the depth 
variable to see the gravity signal for similar 
shallower reservoir. For all scenarios, the 
achieved gravity signal seems likely to be 
detected by state-of-the-art seafloor 
gravimeters. By increasing the production 
wells, it is logically expected to gain a much 
more significant signal. That’s why the 
strength of fluid substitution is intensified. 
The detection of fluid movements provides 
valuable information on aquifer support 
which is strong on the north-east of reservoir, 
lateral compartmentalization and 
permeability. The effect of water substitution 
on gravity signal in Southern and Eastern 
part of reservoir at real depth is not 
detectable. However, these signals could be 
detected in other scenarios. 
It should be taken into account that we deal 
with an infinitesimal density changes due to 
fluid saturation variations which cannot be 
directly inferred from seismic investigations. 
Therefore, for this gas filed, it is highly 
recommended to integrate time lapse gravity 
and time lapse seismic for having a holistic 
interpretation about the subsurface events at 
reservoir life. The reservoir is a highly 
potential target for performing some skillful 
manoeuver like investigating its 
geomechanical behavior based on gravity 
monitoring, which is in to-do list of the 
authors for the near future.  
It should be noted that for the depths greater 
than 3500 m, special circumstances (such as: 
increasing the production rate and production 
wells, and stronger water drive support from 
surrounding aquifer) should be provided for 
applicability of gravity technique. 
 
5. Conclusion 
Gravity monitoring for hydrocarbon 
reservoirs is under the influence of target 
characteristics such as: depth, thickness, 
horizontal extension, cementation, 
permeability, porosity, temperature and 
pressure of the reservoir. In the present 

sensitivity study of monitoring the saturation 
changes in a giant gas field, in spite of 
enormous distance between the target and 
grid points on the surface, reservoir 
characteristics were suitable enough to result 
in detectable signals in all scenarios. By 
increasing the number of production wells 
from 7 to 10 and also decreasing the depth of 
reservoir, the magnitude of time-lapse gravity 
signals would increase. The maximum of 
gravity signal is acquired on the location of 
reservoir where the fluids have high mobility. 
The positive achieved gravity signal 
corresponds to the rising gas-water contact. 
The results indicate that in the north-east of 
the reservoir, there are strong aquifer support 
as a consequence of pressure depletion. 
Moreover, the detection of fluid movements 
provides valuable information on lateral 
compartmentalization and permeability in 
this reservoir. 
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