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Abstract

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L;-
norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-
linearity introduced by the L;-norm, a model-space iteratively reweighted least squares algorithm
is used. The origina model matrix is factorized using the Golub-Kahan bidiagonalization that
projects the problem onto a Krylov subspace with a significantly reduced dimension. The model
matrix of the projected system inherits the ill-conditioning of the original matrix, but the spectrum
of the projected system accurately captures only a portion of the full spectrum. Equipped with the
singular value decomposition of the projected system matrix, the solution of the projected problem
is expressed using a filtered singular value expansion. This expansion depends on a regularization
parameter which is determined using the method of Generalized Cross Validation (GCV), but here
it is used for the truncated spectrum. This new technique, Truncated GCV (TGCV), is more
effective compared with the standard GCV method. Numerical results using a synthetic example
and real data demonstrate the efficiency of the presented algorithm.

Keywords: Magnetic survey, Sparse inversion, Golub-Kahan bidiagonalization, Regularization
parameter estimation, Truncated generalized cross validation.

1. Introduction

The inversion of magnetic field data encloses
many practical difficulties. Most importantly,
the solution of the problem is not unique.
While the physics of the problem introduces
inherent ambiguity in the solution, algebraic
ambiguity arises because the number of
measurements is considerably smaller than
the number of unknown model parameters in
the discretized subsurface (Li and Oldenburg,
1996; Pilkington, 1997). The determination
of the solution becomes further complicated
by the contamination of the observations by
noise, which is amplified in the inversion
process due to the ill-conditioning of the
model matrix. Therefore, in order to estimate
a stable and geologically meaningful
solution, it is necessary to both impose
additional constraints on the model and apply
regularization (Portniaguine and Zhdanov,
1999). Finally, seeking a three-dimensiona
model of the subsurface presents a
computational challenge, and powerful
algorithms are needed to reduce both
memory and CPU requirements of the
computing systems (Li and Oldenburg, 2003;
Pilkington, 2009; Portniaguine and Zhdanov,
2002; Boulanger and Chouteau, 2001). This
paper addresses these issues through the use

of an appropriately constrained edge-
preserving  regularization,  implemented
through a computationally efficient iterative
algorithm for finding the solution in a
relevant subspace, and extends the introduced
approach for the solution of the gravity
inverse problem presented in Vatankhah et
al. (2017).

For the inversion of magnetic data, standard
methods proceed with the minimization of a
global objective function comprising a data
misfit and stabilizing regularization terms.
For data misfit term, a weighted L,-norm
error between the observed and predicted
data due to the inverse solution is typically
used (Li and Oldenburg, 1996; PFilkington,
2009; Portniaguine and Zhdanov, 1999).
Depending on the type of desired model
features to be recovered through the
inversion, there are several choices for the
stabilizer. The general inversion
methodology developed by Li and Oldenburg
(1996) employs stabilization by Ly-norm
regularization with respect to the low-order
finite difference approximation of the
derivatives of the model parameters in each
of the three orthogonal directions. The
approach has been successfully applied in a
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wide range of the geophysical applications
but yields relatively smooth models that are
not always consistent with real geologica
structure (Farquharson, 2008). On the other
hand, stabilization with a Minimum Support
(MS) or Minimum Gradient Support (MGS)
function yields models that provide better
contrast (Last and Kubic, 1983; Portniaguine
and Zhdanov, 1999; Vatankhah et al., 2014,
2015). Sharp and focused images of the
subsurface can also be achieved using the L ;-
norm stabilizer (Loke et al., 2003;
Farquharson, 2008; Vatankhah et d., 2017)
and with the sparseness constraint introduced
by the use of the Cauchy norm applied to the
model parameters  (Pilkington,  2009).
Recently, a method for adaptively recovering
both smooth and blocky models was
developed by Sun and Li (2014). The current
study uses the L;-norm stabilization, which is
implemented by an Iteratively Reweighted
Least Squares (IRLS) agorithm and was
studied for gravity data inversion in
Vatankhah et a. (2017).

To provide an agorithm that is effective for
large problems, it is important to use a
computationally  efficient approach. The
methodology in Pilkington (2009) adopts a
conjugate gradient algorithm for efficient
solution of the underlying large-scae
systems of equations, that is adopted in Li
and Oldenburg (2003) and Pilkington (1997),
as well. An aternative is to use the Golub-
Kahan bidiagonalization (sometimes called
Lanczos bidiagonalization) of the model
matrix, which leads to a hybrid LSQR
algorithm (Chung et al., 2008; Kilmer and
O'Leary, 2001). An extensive discussion of
the multiplicity of the techniques for finding
the regularization parameter in the objective
function, which provides the trade-off
between the data misfit and the stabilizing
terms, is provided in Vatankhah et a. (2017)
and references therein.  The method
developed here is based on an extension of
the Generalized Cross Validation (GCV) rule
for using with the hybrid LSQR algorithm.
This further expands the approach presented
in Vatankhah et al. (2017), which adopted a
truncation for the Unbiased Predictive Risk
Estimator (UPRE), but at the same time,
requires knowledge of the underlying noise
distribution in the measured data that is not
needed for the GCV related techniques.

The rest of the current paper is organized as
follows. In section 2, the inversion
methodology is described based on the L;-
norm stabilizer. The solution of the inverse
problem using the hybrid LSQR algorithm
and methods for estimating the regularization
parameter with respect to the Krylov
subspace are discussed in sections 2.1 and
2.2, respectively. Furthermore, the
application of the SVD at the subspace level
for both the inverse solution and parameter-
choice method is shown in section 2.2. In
section 3, the results of the presented
algorithm applied on a synthetic model
consisting of multiple bodies are
demonstrated. The aeromagnetic data over a
portion of the Wuskwatim Lake, Manitoba,
Canada is inverted and the results are
presented in section 4. The Conclusion is also
given in section 5.

2. Inversion methodology

The subsurface volume is divided into a large
number of cubes of fixed size but unknown
susceptibility. This alows maximum
flexibility for the model to represent the
subsurface structures (Li and Oldenburg,
1996; Boulanger and Chouteau, 2001; Liu et
a., 2015). For the inversion methodology
presented here, it is assumed that there is no
remanent magnetization and only the induced
magneti zation is considered. This
magnetization is uniform within each cube
and is given by the product of the
susceptibility (x) and the induced
geomagnetic field (Li and Oldenburg, 1996).
The susceptibilities of the cubes are collected

. T .
inavector m=(xy,x5,...x,) Where n isthe

total number of the cubes, and d°eR™
contains the measured total magnetic field
data. The relationship between the observed
data and model parametersis given by:

4% = Gm 1)

In Equation (1), the sensitivity matrix
GeR™", m<n, has elements g; that

represent the effect of unit susceptibility in
the j™ cell calculated on the i data location.
A smplified and computationally fast
formula for evaluating the total field of a
cube analytically was developed by Rao and
Babu (1991), and is used here to form the
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elements of the sensitivity matrix. Thus,
given G and d°®, the goal of theinversionis
to find a stable and geologically meaningful
susceptibility model that reproduces the
observed data at the noise level.

As mentioned in previous section, problem
(1) is ill-posed and an acceptable solution
may be found from the minimization of the
following objective function (Vatankhah et
al., 2017):

d(m,a)= "\l\ld (Gm—d"bs)"2 +

2

@2 |m-mgy |, =y (em-a) @

oWy (m-my )

Here, the Li-norm stabilizer is approximated
with a Lynorm term via introducing

2 L\ V4
W, = diag ((m—mapr) +s ) for a very

2
2

small £2~10° (Wohlberg and Rodriguez,
2007; Voronin, 2012; Vatankhah et a.,
2017). The vector m,, contains known

reference information on the parameters,
perhaps estimated from prior geological or
geophysical investigation or it can be set to 0
(Li and Oldenburg, 1996). Weighting matrix
W, is sguare and diagonal with elements
Yo;,i=1:m, where o is the standard
deviation of the noise in the i™ datum
assuming that the noise in d® s
uncorrelated and Gaussian.  Following
Farquharson and Oldenburg (2004), it is
assumed that the absolute magnitudes of the
errors are unknown, but the relative
magnitudes can be estimated. The matrix W,
depends on the model parameters and then
the problem is non-linear and the sparse
model that solves (2) is approximated by
iteratively finding the solutions m®) of the
Tikhonov functions:

- )

(a<k>)2 ’Wu‘k) (m®) -t )”2

for k=1.., aninitial model m!

0 _ Mapr » and

w,@=1. Model weighting matrix is
updated as

k 2 e
Wl = diag ((m(kl) - m(k’z)) +52J for

k >1. It worth noting that in Equation (3), the
regularization parameter o« which balances
the two terms is explicitly dependent on the
iteration number k. Furthermore, to
compensate for the natural decay of the
kernel, the diagona depth weighting matrix,

Wyenn =3/ 2/, s introduced in Equation (3),

replacing W by W® —ww,,,, (Li and

Oldenburg, 1996; Boulanger & Chouteau,

2001). Here, z; isthe mean depth of the cell |

and B is a weghting parameter.
Theoreticaly, m®*) is obtained by
minimizing Equation (3), as explained in
Vatankhah et a. (2017), which leads to the
expression:

m®) = m(?) +(W(k))>l(éTé+(a(k) )2 In)-l GTr =

m(kD) +(W(k) )'1 R (4)

Here, matrix G=W,G (W(") )_1 ,

r‘(k)zwd(d"bs-em(k‘l)) and update h"

solves the regularization problem:

o® (hm,a(k)) _ “éh(k) _#(K) “z N (am )2 “h(k)“z

©)

Practically, susceptibility limits «.;,, and
Kmx Should be used at each iteration to
reduce the non-uniqueness of the problem by
projecting values of the m*) that lie outside
[Kmin+kmax ] 1O the nearest limit. The iteration
terminates when either the solution satisfies
the threshold error level, or a predefined
maximum number of iterations (K. ) IS

reached (Li and Oldenburg, 1996; Boulanger
& Chouteau, 2001).

2-1. The LSQR algorithm

The LSQR algorithm is used to find the
solution of Equation (5) at each iteration
(Paige and Saunders, 19823, b), in which the
Golub-Kahan  Bidiagonaization (GKB)



32 Journal of the Earth and Space Physics, Vol. 44, No. 4, Winter 2019

process is used for projection of the problem
to a krylov subspace of much smaller

dimension. Given amatrix G and a vector 7,
t steps of GKB process compute the
decomposition:

GA =HeaB,  Husga =T/, ©6)

Here, Matrix B, e R ishidiagond, e, is
the unit vector of length t+1, and matrices
Ho, eR™MY and A eR™ are column

orthogonal, (Hansen, 2007). The Columns of
A span a Krylov subspace in which an

approximate solution h, that lies in this
subspace will have the form h, = Az, where
z is a vector of length t. The column
orthogonality of matrix H,, leads to

z 2
replacement of data misfit term ”Gh-ﬁ” in
2

Equation (5) by a data misfit related to the
projected solution:;

|Bz -~ 7)

where c=|f|,e,; (Kilmer and O'Leary,

2001; Chung et a., 2008; Gazzola and Nagy,
2014). Furthermore, by the column

orthogondlity of A, |h[:=|z[ . Equation

(5) is then replaced by the regularized
projected problem (Vatankhah et al., 2017):

0 (a.0) -l - (a2, @

Under the assumption that t< min(m,n),
finding the solution of Equation (8) is more
efficient than solving Equation (5), and
therefore we can replace Equation (4) by:

) -t ) 490 ©

for a projected problem of size t at iteration

k. Note that both G and ¢, and then the
factorization of Equation (6) depends on k.

It is clear that for a given k, the projected
solution z («) depends on both subspace

size t and regularization parameter «. As
described in Vatankhah et al. (2017), the
focus here is the estimation of an optimal «

for agiven t and k. More details on finding
an optimum t can be found in Renaut et al.
(2017). The method described here allows
the user to choose small t values and hence
it is very effective in reducing the
computational time.

2-2. Regularization parameter estimation
Whether solving Equation (5), or Equation
(8) for afixed t, an approach for determining
the regularization parameter a® is required.
Amongst many possbilities, the GCV
method has received significant attention in
conjunction with the solution of the projected
problem (Kilmer and O'Leary, 2001; Chung
et a., 2008; Renaut et al., 2017). GCV is a
statistical technique that is independent from
knowing prior information about the noise in
data; rather it seeks extracting such
information from the observations. It is based
on the leave one out principle in which if a
measurement is removed from the data set,
the corresponding regularized solution should
provide a good estimate for the removed
measurement (Golub et a., 1979). The GCV
function to be minimized is given by (Renaut
etal., 2017):

2

(BB (@)1,
(trace(lt+l -BB, (a)))2

G(at) (10)

where, B (a)=(B'B +a2|t)7lB[T. However,
it has been demonstrated that using
Aoy =agmin{G(a,t)} for the projected

problem may lead to solutions which are
over-smoothed (Chung et al., 2008). Here, |
will further examine the GCV for solving
Equation (8) and introduce a truncated
version of the method, denoted by Truncated
GCV, which is more effective. This method
is motivated by recent results of the truncated
version of the UPRE parameter-choice rule
applied on projected gravity inverse
problems (Vatankhah et al., 2017).

To obtain the TGCV, | use the singular value
decomposition of B given by

Bt=z::l7iUiViT, (Golub and Van Loan,

1996), where the singular values are ordered
a8 y,2y7,2..2y >0 and y and v, are the

columns of the orthonormal matrices
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U c R(t+1)x(t+l) and Ve ]Rtxt , respeCtlver
Introducing the filter factors
fi (05)=7i2/(052+7i2), the solution of

Equation (8) and the GCV are given by
(Renaut et a., 2017):

v, (1)

_Z: 1(l f,(«)) (u,Tc) +Z:+[1
(1+t a))z

Replacing B in Equation (10) by the
best approximation of rank t', for t'<t ,
yields TGCV by replacing t in (12) by t'.
Given « as the optimum vaue for

)

(12)

33

the TGCV, the solution is reconstructed
using (11), specifically with t and not t'.
Thus, the TGCV method does not correspond
to taking the filtered TSVD solution. Instead,
a is chosen to appropriately regularize the
first t' terms, whereas choosing « to
regularize t terms will lead to a larger ato
handle the additional terms, so that the
dominant terms are then over smoothed. In
the following, it is shown that the method of
the TGCV leads to the solutions with less
error as compared with the GCV. For the
inversion  algorithm  presented  here,
0.7t<t'<t is used based on heuristic
presented in Vatankhah et a. (2017) for
Truncated UPRE parameter-choice method.
The steps are summarized in Table 1, which
demonstrates the procedure to find the
estimated models from inverting the
magnetic data.

Table 1. Iterative inversion of magnetic data using GKB with TGCV parameter-choice rule

dobs ’ i

Inputs: My G Wy, £>0, K

min

1: Calculate Wy, , G=W,G, and d°® =W,d*®

2 Initialize m® =m

apr »

3: Caculate Y = 3o -Gm(©, W - G(W(l) )-l, F

t, K

max ’

1 1
WL(l) =1y, W( ) :Wdepth

max *

@ =g*.ém®, k=0

4: While not converged, noise level not satisfied, or k < K, do

5 k=k+1
6: Apply okB: GHAY = HIYBM | HVe,, =

7:FindsvD: B =UTVT. caculae c =], &,

8 For k>1 estimate o) using TGCV (or GCv)

t 2
o:set 44 = 7

u'c

i1 (a(k))z +y2 7 |

10: set m(*) = m(*Y +(W(k))

11: Impose constraint conditions on
k+1) _

m;

12: Calculate residual 7Y = dos - Gm(®)

~1/4
13: St WL(1<+1) diag [((m(k) _ m(k—l))z +82j ] and WK

. 1
14: Calculate GV = G(W(k+1))

15: End while

Outputs: Solution x = m*and K =k .

toforce i, < mt( ) < Km

Il

ax

(k +1)VV

depth
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3. Synthetic example

In this section, the inversion methodology
presented in Table 1 is validated using
a model consisting of six different bodies.
The dimensions and susceptibility of
each body are given in Table 2. Figure
la shows a perspective view of the model.
Furthermore, four plan-sections of the model
are shown in Figure 2. The surface magnetic
data, d®*, are generated on a 100x50
grid with 20 m spacing. The intensity of
the geomagnetic field is 47000 nT,
and inclination and declination are 1=50"
and D=2", respectively. The zero mean
Gaussian random noise with standard

deviation of (0.02(d*) +0.002[d=* ) is
i 2
added to each datum. Figure 1b shows the

Depth (m)

800 600

Northing (m)

noise contaminated data. The subsurface is
divided into 100x50x15=75000 cubes of
dimenson 20 m. The inversion is
implemented via My =0,
[Kmin =0 kmex =0.06]  and K, =50. |
emphasize that t in Algorithm 1 should be
selected as small as possible
(t<min(mn)) in order to provide
an  efficient  agorithm, while it
simultaneously captures the condition of
the origina kernel. Based on a previous
investigation by Vatankhah et a. (2017),
avalue of t>m/20 is suitable for subspace
dimension. Therefore, t=300 is selected;
yielding a matrix B of size 301x300.
The test is performed on a desktop computer,
Intel Corei7-4790 CPU 3.6 GH.

Easting (m)

0 500 1000
Easting (m)

1500

Figure 1. (a) A synthetic Model comprising six different bodies. Dark and grey bodies have the susceptibilities 0.06 and
0.04, respectively; (b) The noise contaminated magnetic anomaly associated with the model. Intensity of the
geomagnetic field, inclination, and declination are 47000 nT, 50°, and 2°, respectively.
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Table 2. The susceptibility and dimensions of each body for the model displayed in Figure 1.

Source number Dimensions (m) Depth to the surface (m) | Susceptibility (SI)
1 100x100x20 20 0.06
2 200%x400x120 20 0.06
3 600%x100%80 40 0.04
4 200%200%x140 20 0.04
5 100x400%x100 20 0.04
6 600%x100%60 40 0.06
K (SI) K (SI)

0.06

0.05

0.04

0.03

Northing (m)

0.02

0.01

o

(] 500 1000 1500

Easting (m)
@

w (S

Northing (m)

o 500

1000 1500
Easting (m)

(©)

Northing (m)

Northing (m)

1000 1500
Easting (m)

(b)

1000
Easting (m)

(d)

1500

Figure 2. The model in Figure 1 is displayed in four plan-sections. The depths of the sections are: (a) 20 m; (b) 60 m; (c)

100 m; and (d) 140 m.

The inversion process is very fast, requiring
less than 10 minutes to implement.
The results of the algorithm for both the
GCV and TGCV parameter-choice rules are
given in Table 3. In each case, the fina
iteration (K), the fina regularization
parameter (a(K) ), and the relative error of the

reconstructed model at final iteration (RE(X))
are reported. The results indicate that TGCV
outperforms the GCV method. The plan-

sections of the reconstructed model using
TGCV are shown in Figure 3. The solution
has horizontal borders that are in good
agreement with those of the original model,
but as it is typica for the inversion of
magnetic data, additional structures appear at
depth due to the loss of resolution.
Nonetheless, unlike the smoothing inversion
algorithms, the estimated model here is more
focused even at depth.

Table 3. The inversion results obtained by inverting magnetic data from Figure 1b using algorithm presented in Table 1
with t=300, for TGCV and GCV as the parameter-choice methods.

Parameter-choice method | Iteration (K ) oK) Re(K)
TGCV 4 190 0.8127
GCV 5 774 0.8583




36 Journal of the Earth and Space Physics, Vol. 44, No. 4, Winter 2019

x (S

800

600

Northing (m)

400

200

0 500 1000 1500

Easting (m)

@

800

600

Northing (m)

400

200

0 500

1000
Easting (m)

1500

(©

x (SI)

Northing (m)

Northing (m)

x (SI)

0 500 1000 1500

Easting (m)

(b)

K (SI)

0.03

0 500

1000 1500
Easting (m)

(d)

Figure 3. The reconstructed model with t=300 and TGCV. The depths of the sections are: (a) 20 m; (b) 60 m; (c) 100 m;

and (d) 140 m.

4. Real data

The developed technique is applied for the
inversion of aeromagnetic data recorded over
the Wuskwatim Lake region in Manitoba,
Canada (Figure 4). The given area lies within
a poorly exposed meta-sedimentary gneiss
belt consisting of paragneiss, amphibolite,
and migmatite derived from Proterozoic
volcanic and sedimentary rocks (Pilkington,
2009). Pilkington (2009) applied a data-space
inversion methodology with a Cauchy norm
gparsity constraint on the model parameters
for the inversion of this data set, arranged in
a 64x64 grid. The results of the inversion
using Li and Oldenburg (1996) algorithm are
aso presented in Pilkington (2009). The
results using the inversion agorithm
presented here can therefore be compared
with the inversions  using both
aforementioned algorithms.

Consistent with the inversion presented in
Pilkington (2009), a 64x64 data grid with
100 m spacing and a uniform subsurface
discretization of 64x64x20=81920 blocks are
used. It is assumed that each datum is
contaminated by Gaussian noise with a
standard deviation of

(O.O3(d°b5)i +0.005]|d°"

2). It is emphasized

that the projected problem should have a size
of t>m/20 , then here t=250 is selected.

Based on information from Pilkington
(2009), the susceptibility range of
[Kmin =0.kmex =0.2] is selected for the

inversion. Here, the TGCV method is used
for estimating the regularization parameter.
The dgorithm starts with m,, =0 and

K =50. The convergence is achieved at

K =11 iterations in less than 15 minutes.
Two plane-sections of the recovered model at
400 m and 800 m depths are presented in
Figures 5a and 5b, respectively. Furthermore,
the TGCV function at final iteration is shown
in Figure 5c, and an isosurface of the 3-D
recovered model for susceptibilities greater
than 0.05 (Sl) is shown in Figure 5d. The
algorithm  produces results that are
competitive with, but not as sparse as, those
presented in Pilkington (2009, Figure 5). This
is a feature of the L;-norm agorithm applied
here, as compared with sparseness constraint
used in Pilkington (2009). If greater sparsity

apr
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is required, the minimum support Lo-norm
stabilizer can be implemented in Table 1 by
replacing W, with

2 -¥2
Wy = diag [(m(kl)—m(kz)) +52] in

37

step 13 (Vaankhah e ad. 2017).
Furthermore, compared with the results of
smoothing algorithm of Li and Oldenburg
(1996), presented in Pilkington (2009, Figure
5), the results are more focused.

nT

6000

5000

s
(=]
=
=

(2]
(=]
(=]
=

orthing (m)

N

2000

1000

//
) Yl
d

700
600
- 500
400
300
200
100

-100
-200
-300

0 i i i i i i
0 1000 2000 3000 4000 5000 6000

Easting (m)

Figure 4. Aeromagnetic data over a portion of the Wuskwatin Lake area, Manitoba, Canada.

6000
5000
E 4000
-1}
.2 3000
£
s
#2000
1000
0
0 2000 4000 6000
Easting (m)
@
3
25
2 —_
~~ =
% z
=18 2
(U] a
1
0.5 l
0 - - '
1000 2000 3000 4000

oL

(©

Northing (m)

K (SI)

6000 0.12
5000 0.1
4000 0.08
3000 0.06
2000 0.04
1000 0.02
0
0 2000 4000 6000
Easting (m)
(b)

Northing (m) 0 0

2000 2000

Easting (m)

(d)

Figure 5. The results of the inversion for data in Figure 4. (a) Plane-section at depth=400 m; (b) Plane-section at
depth=800 m; (c) TGCV function at final iteration and (d) The isosurface of the reconstructed model with

susceptibility greater than 0.05 (SI).



38 Journal of the Earth and Space Physics, Vol. 44, No. 4, Winter 2019

5. Conclusion

An agorithm was developed for the
inversion of sparse magnetic data using L -
norm stabilization with projection of the
solution to a smaller Krylov subspace using
the LSQR algorithm. A truncated GCV for
estimating the regularization parameter in the
subspace was introduced so that the
components related to the inaccurate small
singular values are ignored in calculating the
regularization parameter. For relatively small
subspaces, acceptable solutions are obtained
with a limited number of iterations for the
IRLS algorithm. The algorithm was validated
for a synthetic model consisting of multiple
bodies, and demonstrated that the algorithm
permits inversion of large data sets and
produces relatively focused images of the
subsurface. The results indicated that TGCV
outperforms the GCV parameter-choice
method. The agorithm was applied for the
inversion of real aeromgnetic data collected
over Wuskwatim Lake in Manitoba, Canada.
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