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Abstract 
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-
norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-
linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm 
is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that 
projects the problem onto a Krylov subspace with a significantly reduced dimension. The model 
matrix of the projected system inherits the ill-conditioning of the original matrix, but the spectrum 
of the projected system accurately captures only a portion of the full spectrum. Equipped with the 
singular value decomposition of the projected system matrix, the solution of the projected problem 
is expressed using a filtered singular value expansion. This expansion depends on a regularization 
parameter which is determined using the method of Generalized Cross Validation (GCV), but here 
it is used for the truncated spectrum. This new technique, Truncated GCV (TGCV), is more 
effective compared with the standard GCV method. Numerical results using a synthetic example 
and real data demonstrate the efficiency of the presented algorithm.  
 
Keywords: Magnetic survey, Sparse inversion, Golub-Kahan bidiagonalization, Regularization 

parameter estimation, Truncated generalized cross validation. 
 
1. Introduction 
The inversion of magnetic field data encloses 
many practical difficulties. Most importantly, 
the solution of the problem is not unique. 
While the physics of the problem introduces 
inherent ambiguity in the solution, algebraic 
ambiguity arises because the number of 
measurements is considerably smaller than 
the number of unknown model parameters in 
the discretized subsurface (Li and Oldenburg, 
1996; Pilkington, 1997). The determination 
of the solution becomes further complicated 
by the contamination of the observations by 
noise, which is amplified in the inversion 
process due to the ill-conditioning of the 
model matrix. Therefore, in order to estimate 
a stable and geologically meaningful 
solution, it is necessary to both impose 
additional constraints on the model and apply 
regularization (Portniaguine and Zhdanov, 
1999). Finally, seeking a three-dimensional 
model of the subsurface presents a 
computational challenge, and powerful 
algorithms are needed to reduce both 
memory and CPU requirements of the 
computing systems (Li and Oldenburg, 2003; 
Pilkington, 2009; Portniaguine and Zhdanov, 
2002; Boulanger and Chouteau, 2001). This 
paper addresses these issues through the use 

of an appropriately constrained edge-
preserving regularization, implemented 
through a computationally efficient iterative 
algorithm for finding the solution in a 
relevant subspace, and extends the introduced 
approach for the solution of the gravity 
inverse problem presented in Vatankhah et 
al. (2017). 
For the inversion of magnetic data, standard 
methods proceed with the minimization of a 
global objective function comprising a data 
misfit and stabilizing regularization terms. 
For data misfit term, a weighted L2-norm 
error between the observed and predicted 
data due to the inverse solution is typically 
used (Li and Oldenburg, 1996; Pilkington, 
2009; Portniaguine and Zhdanov, 1999). 
Depending on the type of desired model 
features to be recovered through the 
inversion, there are several choices for the 
stabilizer. The general inversion 
methodology developed by Li and Oldenburg 
(1996) employs stabilization by L2-norm 
regularization with respect to the low-order 
finite difference approximation of the 
derivatives of the model parameters in each 
of the three orthogonal directions. The 
approach has been successfully applied in a 
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wide range of the geophysical applications 
but yields relatively smooth models that are 
not always consistent with real geological 
structure (Farquharson, 2008). On the other 
hand, stabilization with a Minimum Support 
(MS) or Minimum Gradient Support (MGS) 
function yields models that provide better 
contrast (Last and Kubic, 1983; Portniaguine 
and Zhdanov, 1999; Vatankhah et al., 2014, 
2015). Sharp and focused images of the 
subsurface can also be achieved using the L1-
norm stabilizer (Loke et al., 2003; 
Farquharson, 2008; Vatankhah et al., 2017) 
and with the sparseness constraint introduced 
by the use of the Cauchy norm applied to the 
model parameters (Pilkington, 2009). 
Recently, a method for adaptively recovering 
both smooth and blocky models was 
developed by Sun and Li (2014). The current 
study uses the L1-norm stabilization, which is 
implemented by an Iteratively Reweighted 
Least Squares (IRLS) algorithm and was 
studied for gravity data inversion in 
Vatankhah et al. (2017).  
To provide an algorithm that is effective for 
large problems, it is important to use a 
computationally efficient approach. The 
methodology in Pilkington (2009) adopts a 
conjugate gradient algorithm for efficient 
solution of the underlying large-scale 
systems of equations, that is adopted in Li 
and Oldenburg (2003) and Pilkington (1997), 
as well. An alternative is to use the Golub-
Kahan bidiagonalization (sometimes called 
Lanczos bidiagonalization) of the model 
matrix, which leads to a hybrid LSQR 
algorithm (Chung et al., 2008; Kilmer and 
O'Leary, 2001). An extensive discussion of 
the multiplicity of the techniques for finding 
the regularization parameter in the objective 
function, which provides the trade-off 
between the data misfit and the stabilizing 
terms, is provided in Vatankhah et al. (2017) 
and references therein. The method 
developed here is based on an extension of 
the Generalized Cross Validation (GCV) rule 
for using with the hybrid LSQR algorithm. 
This further expands the approach presented 
in Vatankhah et al. (2017), which adopted a 
truncation for the Unbiased Predictive Risk 
Estimator (UPRE), but at the same time, 
requires knowledge of the underlying noise 
distribution in the measured data that is not 
needed for the GCV related techniques.  

The rest of the current paper is organized as 
follows. In section 2, the inversion 
methodology is described based on the L1-
norm stabilizer. The solution of the inverse 
problem using the hybrid LSQR algorithm 
and methods for estimating the regularization 
parameter with respect to the Krylov 
subspace are discussed in sections 2.1 and 
2.2, respectively. Furthermore, the 
application of the SVD at the subspace level 
for both the inverse solution and parameter-
choice method is shown in section 2.2. In 
section 3, the results of the presented 
algorithm applied on a synthetic model 
consisting of multiple bodies are 
demonstrated. The aeromagnetic data over a 
portion of the Wuskwatim Lake, Manitoba, 
Canada is inverted and the results are 
presented in section 4. The Conclusion is also 
given in section 5. 
 
2. Inversion methodology 
The subsurface volume is divided into a large 
number of cubes of fixed size but unknown 
susceptibility. This allows maximum 
flexibility for the model to represent the 
subsurface structures (Li and Oldenburg, 
1996; Boulanger and Chouteau, 2001; Liu et 
al., 2015). For the inversion methodology 
presented here, it is assumed that there is no 
remanent magnetization and only the induced 
magnetization is considered. This 
magnetization is uniform within each cube 
and is given by the product of the 
susceptibility ( ) and the induced 
geomagnetic field (Li and Oldenburg, 1996). 
The susceptibilities of the cubes are collected 

in a vector  1 2, ,...,
T

n  m =  where n  is the 

total number of the cubes, and obs mϒd  
contains the measured total magnetic field 
data. The relationship between the observed 
data and model parameters is given by: 

obs Gd m                                                         (1) 

In Equation (1), the sensitivity matrix 
m nG ϒ , m n= , has elements ijg  that 

represent the effect of unit susceptibility in 
the jth cell calculated on the ith data location. 
A simplified and computationally fast 
formula for evaluating the total field of a 
cube analytically was developed by Rao and 
Babu (1991), and is used here to form the 
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elements of the sensitivity matrix. Thus, 
given G  and obsd , the goal of the inversion is 
to find a stable and geologically meaningful 
susceptibility model that reproduces the 
observed data at the noise level. 
As mentioned in previous section, problem 
(1) is ill-posed and an acceptable solution 
may be found from the minimization of the 
following objective function (Vatankhah et 
al., 2017):  
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Here, the L1-norm stabilizer is approximated 
with a L2-norm term via introducing

   1 42 2
1L aprW diag 

 
   

 
m m  for a very 

small 2 910   (Wohlberg and Rodriguez, 
2007; Voronin, 2012; Vatankhah et al., 
2017).  The vector aprm  contains known 

reference information on the parameters, 
perhaps estimated from prior geological or 
geophysical investigation or it can be set to 0  
(Li and Oldenburg, 1996). Weighting matrix 

dW  is square and diagonal with elements 

1 , 1 :i i m  , where i  is the standard 
deviation of the noise in the ith datum 
assuming that the noise in obsd  is 
uncorrelated and Gaussian. Following 
Farquharson and Oldenburg (2004), it is 
assumed that the absolute magnitudes of the 
errors are unknown, but the relative 
magnitudes can be estimated. The matrix 1LW  

depends on the model parameters and then 
the problem is non-linear and the sparse 
model that solves (2) is approximated by 

iteratively finding the solutions  km  of the 
Tikhonov functions: 
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for 1,...,k   an initial model  0
aprm m , and 

 1
1L nW I . Model weighting matrix is 

updated as 

      
1 421 2 2

1
k k k

LW diag 


          
m m  for 

1k  . It worth noting that in Equation (3), the 
regularization parameter   which balances 
the two terms is explicitly dependent on the 
iteration number k . Furthermore, to 
compensate for the natural decay of the 
kernel, the diagonal depth weighting matrix, 

1depth jW z , is introduced in Equation (3), 

replacing  
1
k

LW  by    
1
kk

depthLW W W  (Li and 

Oldenburg, 1996; Boulanger & Chouteau, 
2001). Here, jz  is the mean depth of the cell j 

and   is a weighting parameter. 

Theoretically,  km  is obtained by 
minimizing Equation (3), as explained in 
Vatankhah et al. (2017), which leads to the 
expression: 

            
-1-1 2-1k k k k kT T

nW G G I G   % % %% % % %m m r

      -1-1k k kWm h                                        (4)  
 

Here, matrix   -1k
dG W G W%% , 

    -1-k kobs
dW G%r d m  and update  kh  

solves the regularization problem: 
 

               2 2 2

22
, -k k k k k k kG   %% %h h r h  

 (5) 
 

Practically, susceptibility limits min  and 

max  should be used at each iteration to 

reduce the non-uniqueness of the problem by 

projecting values of the  km  that lie outside 
 min max,   to the nearest limit. The iteration 

terminates when either the solution satisfies 
the threshold error level, or a predefined 
maximum number of iterations ( maxK ) is 
reached (Li and Oldenburg, 1996; Boulanger 
& Chouteau, 2001). 
 
2-1. The LSQR algorithm 
The LSQR algorithm is used to find the 
solution of Equation (5) at each iteration 
(Paige and Saunders, 1982a, b), in which the 
Golub-Kahan Bidiagonalization (GKB) 
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process is used for projection of the problem 
to a krylov subspace of much smaller 

dimension. Given a matrix G%%  and a vector %r , 
t  steps of GKB process compute the 
decomposition: 

1 1 1 2
,t t t t tGA H B H   %% % %e r r                  (6) 

Here, Matrix  1t t
tB  ϒ  is bidiagonal, 1te  is 

the unit vector of length 1t  , and matrices 
 1

1
m t

tH  
 ϒ  and n t

tA ϒ  are column 
orthogonal, (Hansen, 2007). The Columns of 

tA  span a Krylov subspace in which an 

approximate solution th  that lies in this 

subspace will have the form t t tAh z , where 

tz
 is a vector of length t . The column 

orthogonality of matrix 1tH   leads to 

replacement of data misfit term 
2

2
-G%% %h r  in 

Equation (5) by a data misfit related to the 
projected solution: 

2

2t tB z c                                                           (7) 

where 12 t %c r e  (Kilmer and O’Leary, 

2001; Chung et al., 2008; Gazzola and Nagy, 
2014). Furthermore, by the column 

orthogonality of tA , 2 2

2 2t th z  . Equation 

(5) is then replaced by the regularized 
projected problem (Vatankhah et al., 2017): 

       22 2

2 2
,k k k

t t t tB    z z c z        (8) 

Under the assumption that  min ,t m n= , 

finding the solution of Equation (8) is more 
efficient than solving Equation (5), and 
therefore we can replace Equation (4) by: 

          1
1k k k k k

t t t tW A
 m m z                      (9) 

for a projected problem of size t  at iteration 

k . Note that both G%%  and %r , and then the 
factorization of Equation (6) depends on k . 
It is clear that for a given k , the projected 
solution  t z  depends on both subspace 

size t  and regularization parameter  . As 
described in Vatankhah et al. (2017), the 
focus here is the estimation of an optimal   

for a given t  and k . More details on finding 
an optimum  can be found in Renaut et al. 
(2017). The method described here allows 
the user to choose small t  values and hence 
it is very effective in reducing the 
computational time. 
 
2-2. Regularization parameter estimation 
Whether solving Equation (5), or Equation 
(8) for a fixed t , an approach for determining 

the regularization parameter  k  is required. 
Amongst many possibilities, the GCV 
method has received significant attention in 
conjunction with the solution of the projected 
problem (Kilmer and O’Leary, 2001; Chung 
et al., 2008; Renaut et al., 2017). GCV is a 
statistical technique that is independent from 
knowing prior information about the noise in 
data; rather it seeks extracting such 
information from the observations. It is based 
on the leave one out principle in which if a 
measurement is removed from the data set, 
the corresponding regularized solution should 
provide a good estimate for the removed 
measurement (Golub et al., 1979). The GCV 
function to be minimized is given by (Renaut 
et al., 2017): 
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where,     12T T
t t t t tB B B I B 


  . However, 

it has been demonstrated that using 

  arg min ,opt G t   for the projected 

problem may lead to solutions which are 
over-smoothed (Chung et al., 2008). Here, I 
will further examine the GCV for solving 
Equation (8) and introduce a truncated 
version of the method, denoted by Truncated 
GCV, which is more effective. This method 
is motivated by recent results of the truncated 
version of the UPRE parameter-choice rule 
applied on projected gravity inverse 
problems (Vatankhah et al., 2017). 
To obtain the TGCV, I use the singular value 
decomposition of tB  given by 

1

t T
t i i ii

B 


 u v , (Golub and Van Loan, 

1996), where the singular values are ordered 
as 1 2 ... 0t       and iu  and iv  are the 
columns of the orthonormal matrices 
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   1 1t tU   ϒ  and t tV ϒ , respectively. 
Introducing the filter factors 

   2 2 2
i i if      , the solution of 

Equation (8) and the GCV are given by 
(Renaut et al., 2017): 
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                                                                         (12) 

Replacing tB  in Equation (10) by the  

best approximation of rank t , for t t   , 
yields TGCV by replacing t  in (12) by t . 
Given   as the optimum value for  

 

the TGCV, the solution is reconstructed 
using (11), specifically with t  and not t . 
Thus, the TGCV method does not correspond 
to taking the filtered TSVD solution. Instead, 
  is chosen to appropriately regularize the 
first t  terms, whereas choosing   to 
regularize t  terms will lead to a larger  to 
handle the additional terms, so that the 
dominant terms are then over smoothed. In 
the following, it is shown that the method of 
the TGCV leads to the solutions with less 
error as compared with the GCV. For the 
inversion algorithm presented here, 
0.7t t t   is used based on heuristic 
presented in Vatankhah et al. (2017) for 
Truncated UPRE parameter-choice method. 
The steps are summarized in Table 1, which 
demonstrates the procedure to find the 
estimated models from inverting the 
magnetic data. 

Table 1. Iterative inversion of magnetic data using GKB with TGCV parameter-choice rule 

 Inputs: obsd , aprm , G , dW , 0  , min , max , t , maxK . 

1: Calculate depthW , dG W G% , and obs obs
dW%d d    

2: Initialize  0
aprm m ,  1

1 nLW I ,  1
depthW W    

3: Calculate    1 0-obs G % %%r d m ,     -11 1G G W%% % ,    1 0-obs G % %%r d m , 0k     

4: While not converged, noise level not satisfied, or maxk K  do 

5: 1k k   

6: Apply GKB:        
1

kk k k
t ttG A H B%% ,      

11
2

k k k
ttH   % %e r r  

7: Find SVD:  k T
tB U V  . Calculate 12 t %c r e  

8: For 1k   estimate  k  using TGCV (or GCV) 

9: Set  
  
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2
21
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10: Set           1
1k k k k k

t t t tW A
 m m z  

11: Impose constraint conditions on  k
tm  to force  

min max
k

t  m   

12: Calculate residual    1 -k kobs G  % %%r d m  

13: Set       
1 421 1 2

1
k k k

LW diag 


          
m m  and    11

1
kk

depthLW W W    

14: Calculate     -11 1k kG G W %% %  

15: End while 

Outputs: Solution  k  m and K k . 
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5. Conclusion 
An algorithm was developed for the 
inversion of sparse magnetic data using L1-
norm stabilization with projection of the 
solution to a smaller Krylov subspace using 
the LSQR algorithm. A truncated GCV for 
estimating the regularization parameter in the 
subspace was introduced so that the 
components related to the inaccurate small 
singular values are ignored in calculating the 
regularization parameter. For relatively small 
subspaces, acceptable solutions are obtained 
with a limited number of iterations for the 
IRLS algorithm. The algorithm was validated 
for a synthetic model consisting of multiple 
bodies, and demonstrated that the algorithm 
permits inversion of large data sets and 
produces relatively focused images of the 
subsurface. The results indicated that TGCV 
outperforms the GCV parameter-choice 
method. The algorithm was applied for the 
inversion of real aeromgnetic data collected 
over Wuskwatim Lake in Manitoba, Canada. 
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