Journal of the Earth and Space Physics, Vol. 44, No. 4, Winter 2019, P. 63-71

DOI: 10.22059/jesphys.2018.253742.1006984

Location and dimensionality estimation of geological bodies using eigenvectors of

"Computed Gravity Gradient Tensor"

Karimi, K., Oveisy Moakhar, M.? and Shirzaditabar, F.?

1. M.Sc. Student, Department of Physics, faculty of Science, Razi University, Kermanshah, Iran
2. Assistant Professor, Department of Physics, faculty of Science, Razi University, Kermanshah, Iran

(Received: 11 March 2018, Accepted: 15 May 2018)

Abstract

One of the methodologies employed in gravimetry exploration is eigenvector analysis of Gravity
Gradient Tensor (GGT) which yields a solution including an estimation of a causative body’s
Center of Mass (COM), dimensionality and strike direction. The eigenvectors of GGT give very
rewarding clues about COM and strike direction. Additionally, the relationships between its
components provide a quantity (I), representative of a geologic body dimensions. Although this
procedure directly measures derivative components of gravity vector, it is costly and demands
modern gradiometers. This study intends to obtain GGT from an ordinary gravity field
measurement (g,). This Tensor is called Computed GGT (CGGT). In this procedure, some
information about a geologic mass COM, strike and rough geometry, just after an ordinary
gravimetry survey, is gained. Because of derivative calculations, the impacts of noise existing in
the main measured gravity field (g,) could be destructive in CGGT solutions. Accordingly, to
adjust them, a “moving twenty-five point averaging” method, and “upward continuation” are
applied. The methodology is tested on various complex isolated and binary models in noisy
conditions. It is also tested on real geologic example from a salt dome, USA, and all the results are
highly acceptable.

Keywords: Computed Gravity Gradient Tensor (CGGT); Dimensionality Index (I); Eigenvector;

Eigenvalue.

1. Introduction

Nabighian (1984) extended the 2D Hilbert
Transform of a potential field to 3D cases, in
which he proved that Hilbert Transform was
composed of two parts: one acting on x
component, and another, on y component.
Having this knowledge, each horizontal and
vertical components of the potential field are
derivable from each other. On the other hand,
gravity gradiometry goes historically back to
1886, and was a turning point in petroleum
industry (Bell and Hansen, 1998). In 1970s,
new gradiometers were developed to measure
all components of the Gravity Gradient
Tensor (GGT) (Bell et al., 1997). Different
applications of GGT data have been reported
in recent years (Vasco and Taylor, 1991;
Pawlowski, 1998; Hatch, 2004; Fedi et al.,
2005; Dransfield, 2007). In the last three
decades, other processing and interpretation
techniques of GGT data have been widely
improved (Pedersen and Rasmussen, 1990;
Edwards et al., 1997; Childers et al., 1999;
Routh et al.,, 2001; Hinojosa and Mickus,
2002; Zhdanov et al., 2004; While et al.,
2006; Droujinine et al., 2007; Murphy and

Brewster, 2007; Pajot et al., 2008; FitzGerald
et al., 2009; While et al., 2009; Beiki and
Pedersen, 2010; Oruc, 2010; Zhou, 2016).
Pedersen and Rasmussen (1990) studied
gradient tensors of gravity and magnetic
fields and presented some invariants to show
source dimensionalities. They also indicated
that the maximum eigenvalue and its
corresponding eigenvector (first eigenvector)
of the GGT are related to the COM of a
simple point source. However, they did not
develop a practical technique for estimating
source location from the first eigenvectors.
Furthermore, they neglected the interpretive
power contained in the eigenvector
corresponding to the minimum eigenvalue
(third eigenvector). Zhang et al. (2000)
showed that the components of the gradient
tensor can be used to improve the Euler
deconvolution method. They applied their
method on the measured GGT data and
improved the performance of Euler
deconvolution using all measured gradients.
Seven years later, Mikhailov et al. (2007)
combined scalar invariants of the tensor and

*Corresponding author:

kuroshkarimi88 @gmail.com



64 Journal of the Earth and Space Physics, Vol. 44, No. 4, Winter 2019

Euler deconvolution to locate equivalent
sources. They also proved that tensor
deconvolution approximately locates COM,
whereas Euler deconvolution better outlines
the edges of causative bodies. Oruc (2010)
proposed a new method based on the
invariants of the GGT to interpret gravity
data due to simple causative sources.
He estimated the depth of a body from the
multiplication of the maximum of the vertical
gravity component by the maximum value
of a ratio of the invariants related to
dimensionality of the body. Beiki and
Pedersen (2010) located the causative bodies
from a collection of eigenvectors of the GGT
using robust least squares. They used
the third eigenvectors which provide
information about the strike direction of 2D
causative bodies. Finally, Zhou (2016)
presented a new depth estimation method
based on the ratio of gravity and full tensor
gradient invariant. In this paper, in place
of using directly measured GGT components,
they are computed from measured gravity
data (CGGT). Then, COMs, strikes,
and dimensions of different models are
estimated.

2. Theory

Due to the fact that the gravity gradiometry
and full use of GGT characteristics may be
expensive and inconvenient in some
geophysical explorations, they are going to
be calculated from the vertical component of
gravity field (g,) that could be -easily
measured in an ordinary gradiometry survey.
To this end, Hilbert Transform is used, and
the other components of gravity vector (g
and gy) are acquired. Then, the first
derivatives of these three components are
calculated (employing Fourier Domain). The
horizontal and vertical derivatives of
potential field, U, are Hilbert transforming
pairs (Nabighian, 1984):
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Using inversion of Equation (2) we have
(Nabighian, 1984):
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Now, CGGT components can be derived as:
g =F (K, [F(g,)]) 4
Where
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Notice that GGT and CGGT are not exactly
the same, specifically, in real cases.
However, CGGT could be an acceptable
estimation of GGT. The components of GGT
(measured  components by  modern
gradiometers) have some advantages over
those of CGGT (computed components) like
fairly noise resistance. It should be noted
again that this paper is going to use CGGT,
not GGT.
Since I' is a symmetrical matrix, it has real
eigenvalues (b)) and  perpendicular
eigenvectors “V;”. Therefore, the following
relation holds: T'v, =hyv,.

I' can then become diagonal by its
eigenvectors (Pedersen and Rasmussen,
1990):

(6)
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For 2-D cases: |b|=|b,| and b, =0, and for
3-D cases: |b,| =|b,| and b, =2|b2| = 2|b3|.

For simplicity in the calculations, instead of
“I"”, one can work with “A”. In a source free

region “A” has some special features as
follows (Pedersen and Rasmussen, 1990):

I :Traoe(A):il"ii =b+b +b, =0,

L :AIAZ+AIA3+A§2A3 :QQ +Qh +Qh’
I, =det(A) =bbh

9

3

I is a dimensionality index: =0 is defined for
absolutely 2-D masses, while in the case of a
pure 3-D body, it is 1. Predictably, the values
between these two belong to geometrically
complex bodies. A threshold value, between
two and three dimensionality, is defined as
[=0.5 (Beiki and Pedersen, 2010). If | is
larger than 0.5, the mass is regarded as a
semi-3D one, and vice versa if it is smaller
than 0.5.

The first eigenvectors of I, corresponding to
the largest eigenvalues, approximately point
in the center of mass of a body. To explain
the convergence of these first eigenvectors to
the COM, one can argue that because I is
symmetrical, one of its eigenvectors, which
we call it “first eigenvector”, at each
measurement point, approximately aims to
the source of the gravitational field (COM),
and the other eigenvectors lie in a plane
perpendicular to that first eigenvector. On the

9.
other hand, the magnitude of V(g,)=|g,

™)

9,
(the third column of T), is approximately two
times larger than V(Q,)=V(g,). After
diagonalizaion through Equation (6), V(g, )

fits the first eigenvector. It stands to reason
that eigenvalue of such a rotated vector is

twice that of the others, i.c. b = 2|b,| =2|b,|.
The vector passing through each data point

corresponding to the first eigenvector creates
a distance with the real COM, which we are
looking for. These distances are (Beiki and
Pedersen, 2010):

AS, = v, x(r, )| ®)
where
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in which

R =05 =X, + (3 =Yoo +E =2, - Vi
is the first eigenvector in the i point. T,
and r; are the coordinates of real COM of
a body and i™ data point, respectively.
The point (X'ip, VYo, Zio) 1S a point
along ”V,;” that creates the distance AJ;
with r, R is the magnitude of the vector
in direction of ”V,;” that approximately
points to the COM and gives the distance
to it. By minimizing the square distances of
A%;, the COM is estimated as (Aster et al.,

2003):
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where “z,” is the “depth component” of
“m*" (Beiki and Pedersen, 2010).
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3. Work Flow

The first step is using Hilbert Transform to
compute gx and g, from g, Calculating its
components, CGGT is created afterwards. On
the basis of the maximum or minimum point
of calculated g,, component of CGGT, centre
of an imaginary window, comprising a
number of data points, is specified. The
dimensions of window are then changed until
a solution with a Minimum Standard Error
(MSE) is attained (Beiki and Pedersen,
2010).

4. Synthetic models

In order to test the capability of this method,
six isolated models: sphere, prism, vertical
cylinder, 3D vertical dike, infinite horizontal
cylinder and 2D vertical dike are considered.
The dimensions of the medium and cell

: 2 2
size are 200x200 m~ and 5x5 m°,
1
yim)
200
(100,100,30)
|3 dm
-
100
Strike length % ) Strike direction=30
100,60 30
Thickness=6m (average)
o x(m)
0 100 200
()

Diameter=1im

respectively. The interference effect is
also studied using two binary systems
in which irregularly shaped models as well
as transversely horizontal cylinders in
different depths are used. Herein, a binary
system is a collection of two juxtaposed
models (Figure 1(b) and 1(c)). Such systems
are  considered to  examine  how
the gravitational response of the models
and the precision of the offered method
undergo changes. Furthermore, by
considering the interfering masses, this study
intends to evaluate whether the solutions
resulted from this methodology are
still applicable and trustable. In all cases,
15% random Gaussian Noise is imposed
on the model’s main gravity field.
The characteristics of models and obtained
solutions are given in Table 1. Figure 1(a)
shows all the models.

Diameter=10m

¥(m)

150

Harizontal cylindert A )=(108m, 100m, 20m)

Horizontal cylnder{B)={ 100m, |00m, 40m)

xm)

(b)

Figure 1. a) Schematic images of geophysical models: (1) sphere, (2) prism, (3) vertical cylinder, (4) vertical dike (A),
(5) infinite horizontal cylinder used in a solitary and binary analysis, (6) vertical dike (B), (7) and (8) two
complex models used in a binary system; b) A binary system of complex models in a virtually horizontal
neighborhood; ¢) A binary system of infinite horizontal cylinders in a vertical adjacency. Real COM (white
circles), their relevant coordinates and geometrical properties of the models are shown in (b) and (c).



Location and dimensionality estimation of geological bodies using eigenvectors of ... 67

4-1. Three dimensional bodies

Sphere, prism and finite vertical cylinder
are examples of 3-D bodies and vertical
dike (A) represents a semi 3-D one.
To moderate noise effects to a great extent,
firstly, a “moving twenty five point
averaging” method is employed. In
this method, the average of a g, data point
and its twenty four surrounding points is
calculated in a grid map and the average is
imputed to the main data point. Secondly, the
data are continued upward by 3 meters.
Figures 2(a-d) show the g,, map for sphere,
prism, vertical cylinder and vertical dike (A)

in noisy condition (15%). The most suitable
window yielding MSE is shown in Figure
2(a). White circles indicate the real COMs
and black circles show the estimated ones. In
order to examine interference effects, two
complex 3D and 2D structures (models (7)
and (8) in Figure 1(a)) close together are
considered (Table 1 and Figure 1(b)).
Because the 3D body’s field is dominant, the
maximum point of g,, contour map roughly
lies over it. However, the field effect of
neighboring 2D body can disrupt the field
and the estimated solutions (see Figure 2(e)
and Table 1).

Table 1. Geometrical properties of the isolated and binary models in conjunction with the attained solutions.

N: Number/ M:Model/ R:Radius/ T:Thickness/ SL: Strike Length/  RSD : Real Strike Direction/ DE: Depth Extent / ESD: Estimated Strike Direction
R SL RSD [O(degree) DE .
*
M (m) T (m) (m) or (%,y,2)] (m) COM (m) ESD (x,y,z) Estimated COM (m) I
Sphere 15 - - - - (100, 100, 30) - (99.8+0.0,99.8+0.0,31.6+0.1) 1.0
Prism - 20, 20 - - 20 (100,100,30) - (99.8+0, 99.8+0, 31.7+0.1) 1.0
Vertical cylinder 10 - - - 40 (100,100,30) - (99.8+0.0, 99.8+0.0, 31.1+0.1) 1.0
S [©=0°or
Vertical dike (A) 10 40 (1.00, 0.00, 0.00)] 40 (100,100,30) - (10040.1, 99.7+0.2, 25.3+0.1) 0.92
. . ) [©=0°or B
Horizontal Cylinder 15 2000 (1.00, 0.00, 0.00)] (100,100,30) (0.99, 0.00, 0.01) (99.440.6, 99.7+0.6, 31.7+1.8) 0.01
. . [©=60° or
Vertical dike (B) - 10 150 (0.50,0.86,0.00)] 40 (100,100,30) (0.50, 0.86, 0.01) (100.24+0.9, 99.9+1.4, 27.0+1.1) 0.12
Prism(A) (100,100,30) (99.840.1, 99.7+0.1, 32.2+0.1) 1.0
Prism(B) - 30, 30 30 (100,100,40) - (99.940.1, 99.7+0.1, 37.7+0.1) 1.0
Prism(C) (100,100,50) (100+0.1, 99.7+0.1, 45.3+0.2) 0.99
S 6 [©=30°or
. Dike-like - @ave) 120 (0.86.0.50,0.00)] 30 (100,60,30)
?‘“ary - (99.6£0.1, 94.3+0.1, 32.3£0.4) 0.99
ystem Cylind 24&
ylinder-
Like - 3 - - 40 (100,100,30)
Horizontal
: [©=90°0r
. cyl(l:iler 5 - 2000 (0.00,1.00,0.00)] - (100, 100, 20)
By (0.00,0.99, .01) (99.8£1.2, 99.8+1.0, 32.3+1.6) 0.39
System | Horizontal [O=0or
cy?}r;;ler 5 - 2000 (1.00,0.00,0.00)] - (100, 100, 40)
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Figure 2. Smoothed g,, component of the CGGT in the presence of 15% random Gaussian noise for: a) sphere; b) prism;
c) vertical cylinder; d) vertical dike (A); e) a binary system. White circles show real COMs and black ones are
the best estimated locations of COM. Deviation of black circle toward the adjacent model in (e) is obvious.

4-2. Two dimensional bodies

In this section, a long horizontal cylinder and
a vertical dike (B), as solitary models, are
examined (see Table 1 and models (5) and
(6) in Figure 1(a)). These models are
representatives of 2D bodies. For extracting
the solutions of the horizontal cylinder and
influence of window shapes on them, three
types of windows are considered: square
window (W), rectangular window (W)
with the length two times longer than its
width, rectangular window (W;.) with the
length four times longer than its width. Since
for a 2D body the maximum of g,, is a line,

not a point, the center of the window could
be positioned anywhere on this line except
the edges. For a 2D mass, the rectangular
window, Wi, gives the best solution with
MSE, whereas square windows are suitable
for 3D masses. The third eigenvector at the
window center specifies the strike of the
model. Figure 3(a) indicates g,, contour map
of the horizontal cylinder in a noisy condition
(15%). For the vertical dike (B), I= 0.12 is
indicative of a 2D body. The estimated strike
direction approximates the real orientation of
the dike very well. The results are shown in
Table 1 and Figure 3(b).
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At the last stage of analyzing synthetic
models, the interfering effect of two
transversely horizontal cylinders in different
depths is studied (Figure 1(c)). The centers of
horizontal cylinder (A) and (B) are in (100m,
100m, 20m) and (100m, 100m, 40m),
respectively (Table 1). Since “1=0.39” is less
than the threshold value (0.5), the binary
system is regarded as a quasi-2D model. In
Figure 3(c), the g,, map together with the
window and the estimated strike direction are
shown. The solution for the binary system
indicates that the characteristics of the upper
cylinder (its field) are stronger in the data
than the lower one. The white circle is
representative of real and black one indicates
estimated COM of the system.

5. Case study
One of the most famous oil fields of
the United States is Humble Oil Field.

g, (mgal/m)

Infinite Horizontal
Cvlinder

Binary System Of
Cylinders

S Woe( S0, S0m)

Reservoir rocks of this area are andesitic
and limestone rocks. For more information
about geology refer to Nettleton (1962).
Nettelton (1976) and Abdelrahman and
El-Araby (1996) used the Bouguer gravity
data in this area (Nettleton, 1962) and
estimated the depth component of a salt
dome as 4.97 km and 4.60 km, respectively.
Constituting CGGT components from this
Bouguer gravity data, the best extracted
solution by our method was resulted from a
window, Wy, with dimensions of 5.5 kmx5.5
km bearing 121 data points. The
approximated | and MSE values were, in
turn, 0.99 and 1.08%. Figure 4 indicates g,,
contour map of this geologic structure, the
estimated COM of  which was
(X=17.474£0.01 km, Y=12.11+#0.01 km,
7=4.614+0.04 km). The black circle and W in
Figure 4 show this best estimated solution
and window, in turn.

Vertical Dike (B)

g, (mga Vm)

d strike direction=(0.50, 0.86, 0.01)

o 100 00

xfm)
(b)

vm)

Figure 3. Smoothed g,, component of the CGGT in presence of 15% noise for: a) infinite horizontal cylinder with strike
direction of 0° (relative to x axis) along with its three types of windows; b) vertical dike (B) with strike
direction of 60° (relative to x axis); ¢) a binary system of cylinders. White circles are real COMs, black ones
are the best estimated locations and the vectors in the center of the windows at (X, =100m, yp,,=100m)

indicate the estimated strike directions.
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In the methods presented by Nettelton (1976)
and Abdelrahman and El-Araby (1996), the
horizontal location of COM was not
discussed. However, the horizontal
components of COM could be pinpointed
quantitatively by  our  methodology.
Additionally, even though Humble area
appeared to be a noise free region, they did
not discuss and regard the effect of noise in
their offered techniques to extend them to
other surveys in different regions. By
contrast, noise effect constitutes considerable
contents of our approach. Furthermore, the
attained 1=0.99 in our methodology indicates
that the mass is almost a pure 3-D mass. It is
noteworthy that in the case of simulated data,
Abdelrahman and El-Araby examined
isolated, simple shaped and noiseless models,
while our methodology serves to complex,
noisy, solitary and interfering sources. The
models are also analyzed in three
dimensions, unlike those that published their
work in two dimensions.

y(Km)

5 g,, (mgal/Km)

(17.47+0.01 , 12.11+0.01, -I.ﬁl*_-l').ﬂ-l)

(o |

W=(5.5,5.5)

0
0 15 x(Km) 30

Figure 4. g,, component of CGGT for a salt dome, near
Humble city, USA. The dimensions of the
most suitable window are 5.5 kmx5.5 km
including 121 data points. Black circle
represents the estimated COM.

6. Conclusion

Integrating  Hilbert Transform, gravity
derivative calculations and least square
procedure, this paper presents an independent
approach  to  heighten the  gravity
interpretation process. Although the noise
resistance of this methodology (after
imposing Moving Twenty-five Point
Averaging and Upward Continuation) might
be slightly lower than the one presented by
Beiki and Pedersen (2010), its obtained
solutions for both solitary and binary models

are still fairly accurate. There are some
privileges in employing this methodology.
Definitely, it could save us time, energy and
money. It also gives rise to more accurate
and dependable results and enhances the
quality of gravimetry interpretations. In fact,
by measuring g, (Bouguer gravity data) to
any purpose, an additional strategy to analyze
the data with higher resolution (because of
using the gravity field derivatives) without
extra expenses, time and field work is
provided. Sometimes, the only available
gravity data is just g,, and employing this
technique could give us much more valuable
information, because, apart from COM,
further knowledge about a causative body’s
dimensions and strike direction is yielded
that may not be obtained precisely through
routine Bouguer gravity data.
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