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Abstract 
One of the methodologies employed in gravimetry exploration is eigenvector analysis of Gravity 
Gradient Tensor (GGT) which yields a solution including an estimation of a causative body’s 
Center of Mass (COM), dimensionality and strike direction. The eigenvectors of GGT give very 
rewarding clues about COM and strike direction. Additionally, the relationships between its 
components provide a quantity (I), representative of a geologic body dimensions. Although this 
procedure directly measures derivative components of gravity vector, it is costly and demands 
modern gradiometers. This study intends to obtain GGT from an ordinary gravity field 
measurement (gz). This Tensor is called Computed GGT (CGGT). In this procedure, some 
information about a geologic mass COM, strike and rough geometry, just after an ordinary 
gravimetry survey, is gained. Because of derivative calculations, the impacts of noise existing in 
the main measured gravity field (gz) could be destructive in CGGT solutions. Accordingly, to 
adjust them, a “moving twenty-five point averaging” method, and “upward continuation” are 
applied. The methodology is tested on various complex isolated and binary models in noisy 
conditions. It is also tested on real geologic example from a salt dome, USA, and all the results are 
highly acceptable. 
 
Keywords: Computed Gravity Gradient Tensor (CGGT); Dimensionality Index (I); Eigenvector; 

Eigenvalue. 
 
1. Introduction 
Nabighian (1984) extended the 2D Hilbert 
Transform of a potential field to 3D cases, in 
which he proved that Hilbert Transform was 
composed of two parts: one acting on x 
component, and another, on y component. 
Having this knowledge, each horizontal and 
vertical components of the potential field are 
derivable from each other. On the other hand, 
gravity gradiometry goes historically back to 
1886, and was a turning point in petroleum 
industry (Bell and Hansen, 1998). In 1970s, 
new gradiometers were developed to measure 
all components of the Gravity Gradient 
Tensor (GGT) (Bell et al., 1997). Different 
applications of GGT data have been reported 
in recent years (Vasco and Taylor, 1991; 
Pawlowski, 1998; Hatch, 2004; Fedi et al., 
2005; Dransfield, 2007). In the last three 
decades, other processing and interpretation 
techniques of GGT data have been widely 
improved (Pedersen and Rasmussen, 1990; 
Edwards et al., 1997; Childers et al., 1999; 
Routh et al., 2001; Hinojosa and Mickus, 
2002; Zhdanov et al., 2004; While et al., 
2006; Droujinine et al., 2007; Murphy and 

Brewster, 2007; Pajot et al., 2008; FitzGerald 
et al., 2009; While et al., 2009; Beiki and 
Pedersen, 2010; Oruc, 2010; Zhou, 2016). 
Pedersen and Rasmussen (1990) studied 
gradient tensors of gravity and magnetic 
fields and presented some invariants to show 
source dimensionalities. They also indicated 
that the maximum eigenvalue and its 
corresponding eigenvector (first eigenvector) 
of the GGT are related to the COM of a 
simple point source. However, they did not 
develop a practical technique for estimating 
source location from the first eigenvectors. 
Furthermore, they neglected the interpretive 
power contained in the eigenvector 
corresponding to the minimum eigenvalue 
(third eigenvector). Zhang et al. (2000) 
showed that the components of the gradient 
tensor can be used to improve the Euler 
deconvolution method. They applied their 
method on the measured GGT data and 
improved the performance of Euler 
deconvolution using all measured gradients. 
Seven years later, Mikhailov et al. (2007) 
combined scalar invariants of the tensor and 
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Euler deconvolution to locate equivalent 
sources. They also proved that tensor 
deconvolution approximately locates COM, 
whereas Euler deconvolution better outlines 
the edges of causative bodies. Oruc (2010) 
proposed a new method based on the 
invariants of the GGT to interpret gravity 
data due to simple causative sources.  
He estimated the depth of a body from the 
multiplication of the maximum of the vertical 
gravity component by the maximum value  
of a ratio of the invariants related to 
dimensionality of the body. Beiki and 
Pedersen (2010) located the causative bodies 
from a collection of eigenvectors of the GGT 
using robust least squares. They used  
the third eigenvectors which provide 
information about the strike direction of 2D 
causative bodies. Finally, Zhou (2016) 
presented a new depth estimation method 
based on the ratio of gravity and full tensor 
gradient invariant. In this paper, in place  
of using directly measured GGT components, 
they are computed from measured gravity 
data (CGGT). Then, COMs, strikes,  
and dimensions of different models are 
estimated.  
 
2. Theory 
Due to the fact that the gravity gradiometry 
and full use of GGT characteristics may be 
expensive and inconvenient in some 
geophysical explorations, they are going to 
be calculated from the vertical component of 
gravity field (gz) that could be easily 
measured in an ordinary gradiometry survey. 
To this end, Hilbert Transform is used, and 
the other components of gravity vector (gx 
and gy) are acquired. Then, the first 
derivatives of these three components are 
calculated (employing Fourier Domain). The 
horizontal and vertical derivatives of 
potential field, U, are Hilbert transforming 
pairs (Nabighian, 1984):  
For 2-D cases 
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Using inversion of Equation (2) we have 
(Nabighian, 1984): 
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Now, CGGT components can be derived as: 
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Notice that GGT and CGGT are not exactly 
the same, specifically, in real cases. 
However, CGGT could be an acceptable 
estimation of GGT. The components of GGT 
(measured components by modern 
gradiometers) have some advantages over 
those of CGGT (computed components) like 
fairly noise resistance. It should be noted 
again that this paper is going to use CGGT, 
not GGT.  
Since Г is a symmetrical matrix, it has real 
eigenvalues (bi) and perpendicular 
eigenvectors “Vi”. Therefore, the following 
relation holds: 

ibi iΓv v . 

Г can then become diagonal by its 
eigenvectors (Pedersen and Rasmussen, 
1990): 
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For 2-D cases: 
1 3b b  and 2 0b  , and for 

3-D cases: 
2 3b b  and 1 2 32 2b b b  . 

For simplicity in the calculations, instead of 
“Г”, one can work with “A”. In a source free 
region “A” has some special features as 
follows (Pedersen and Rasmussen, 1990): 
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I is a dimensionality index: I=0 is defined for 
absolutely 2-D masses, while in the case of a 
pure 3-D body, it is 1. Predictably, the values 
between these two belong to geometrically 
complex bodies. A threshold value, between 
two and three dimensionality, is defined as 
I=0.5 (Beiki and Pedersen, 2010). If I is 
larger than 0.5, the mass is regarded as a 
semi-3D one, and vice versa if it is smaller 
than 0.5.  
The first eigenvectors of Г, corresponding to 
the largest eigenvalues, approximately point 
in the center of mass of a body. To explain 
the convergence of these first eigenvectors to 
the COM, one can argue that because Г is 
symmetrical, one of its eigenvectors, which 
we call it “first eigenvector”, at each 
measurement point, approximately aims to 
the source of the gravitational field (COM), 
and the other eigenvectors lie in a plane 
perpendicular to that first eigenvector. On the 

other hand, the magnitude of ( )
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(the third column of Г), is approximately two 
times larger than ( ) ( )x yg g  . After 

diagonalizaion through Equation (6), ( )zg  

fits the first eigenvector. It stands to reason 
that eigenvalue of such a rotated vector is 
twice that of the others, i.e. 1 2 32 2b b b  . 

The vector passing through each data point 

corresponding to the first eigenvector creates 
a distance with the real COM, which we are 
looking for. These distances are (Beiki and 
Pedersen, 2010): 
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and ri are the coordinates of real COM of  
a body and ith data point, respectively.  
The point (x′i,0, y′i,0, z′i,0) is a point  
along ”V1,i” that creates the distance Δδi  
with r0. R′ is the magnitude of the vector  
in direction of ”V1,i” that approximately 
points to the COM and gives the distance  
to it. By minimizing the square distances of 
Δδi, the COM is estimated as (Aster et al., 
2003): 
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and the Standard Error is 
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where “z0” is the “depth component” of 
“mest” (Beiki and Pedersen, 2010).           
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4-1. Three dimensional bodies 
Sphere, prism and finite vertical cylinder  
are examples of 3-D bodies and vertical  
dike (A) represents a semi 3-D one.  
To moderate noise effects to a great extent, 
firstly, a “moving twenty five point 
averaging” method is employed. In  
this method, the average of a gz data point 
and its twenty four surrounding points is 
calculated in a grid map and the average is 
imputed to the main data point. Secondly, the 
data are continued upward by 3 meters. 
Figures 2(a-d) show the gzz map for sphere, 
prism, vertical cylinder and vertical dike (A) 

in noisy condition (15%). The most suitable 
window yielding MSE is shown in Figure 
2(a). White circles indicate the real COMs 
and black circles show the estimated ones. In 
order to examine interference effects, two 
complex 3D and 2D structures (models (7) 
and (8) in Figure 1(a)) close together are 
considered (Table 1 and Figure 1(b)). 
Because the 3D body’s field is dominant, the 
maximum point of gzz contour map roughly 
lies over it. However, the field effect of 
neighboring 2D body can disrupt the field 
and the estimated solutions (see Figure 2(e) 
and Table 1).  

 
Table 1. Geometrical properties of the isolated and binary models in conjunction with the attained solutions. 

 

* N: Number /     M:Model /    R:Radius /    T:Thickness /     SL: Strike Length /      RSD : Real Strike Direction /    DE: Depth Extent /  ESD: Estimated Strike Direction 

N * M 
R 

(m) 
T (m) 

SL 
(m) 

RSD [Θ(degree)  
 or (x,y,z)] 

DE 
(m) 

COM (m) ESD (x,y,z) Estimated COM (m) I 

1 Sphere 15 - - - - (100, 100, 30) - (99.8±0.0,99.8±0.0,31.6±0.1) 1.0 

2 Prism - 20, 20 - - 20 (100,100,30) - (99.8±0, 99.8±0, 31.7±0.1) 1.0 

3 Vertical cylinder 10 - - - 40 (100,100,30) - (99.8±0.0, 99.8±0.0, 31.1±0.1) 1.0 

4 Vertical dike (A)  10 40 
[Θ=0o or  

(1.00, 0.00, 0.00)] 
40 (100,100,30) - (100±0.1, 99.7±0.2, 25.3±0.1) 0.92 

5 Horizontal Cylinder 15 - 2000 
[Θ=0o or 

 (1.00, 0.00, 0.00)] 
- (100,100,30) (0.99, 0.00, 0.01) (99.4±0.6, 99.7±0.6, 31.7±1.8) 0.01 

6 Vertical dike (B) - 10 150 
[Θ=60o or 

(0.50,0.86,0.00)] 
40 (100,100,30) (0.50, 0.86, 0.01) (100.2±0.9, 99.9±1.4, 27.0±1.1) 0.12 

2 Prism(A) 

- 30, 30   30 

(100,100,30) 

- 

(99.8±0.1, 99.7±0.1, 32.2±0.1) 1.0 

2 Prism(B) (100,100,40) (99.9±0.1, 99.7±0.1, 37.7±0.1) 1.0 

2 Prism(C) (100,100,50) (100±0.1, 99.7±0.1, 45.3±0.2) 0.99 

8 

Binary 
System 

Dike-like - 
6 

(ave) 
120 

[Θ=30o or 
(0.86,0.50,0.00)] 

30 (100,60,30) 

- (99.6±0.1, 94.3±0.1, 32.3±0.4) 0.99 

7 
Cylinder-

Like 
- 

24& 
33 

- - 40 (100,100,30) 

5 

Binary 
System 

Horizontal  
cylinder 

(A) 
5 - 2000 

[Θ=90oor 
(0.00,1.00,0.00)] 

- (100, 100, 20) 

(0.00,0.99, .01) (99.8±1.2, 99.8±1.0, 32.3±1.6) 0.39 

5 
Horizontal  
cylinder 

(B) 
5 - 2000 

[Θ=0o or 
(1.00,0.00,0.00)] 

- (100, 100, 40) 

 



68             

 

Figure 2. 

 
4-2. Two
In this se
a vertica
examine
(6) in 
represen
the solu
influence
types of
window 
with the
width, r
length fo
for a 2D

                        

      

      

Smoothed gzz c
c) vertical cylin
the best estima

o dimension
ection, a lon
al dike (B), 

ed (see Tabl
Figure 1(a

ntatives of 2D
utions of the
e of window
f windows 

(W1,c), rec
e length tw
rectangular w
our times lon

D body the m

  Journal of th

             (a)  

             (c)  

component of th
nder; d) vertica
ted locations of

nal bodies  
g horizontal 
as solitary 

e 1 and mo
a)). These 
D bodies. F
 horizontal 

w shapes on
are conside

ctangular wi
o times lon
window (W
nger than its 
maximum of 

he Earth and S

                   

                   

he CGGT in the
al dike (A); e) a
f COM. Deviati

cylinder and
models, are

odels (5) and
models are

or extracting
cylinder and

n them, three
ered: square
indow (W2,c

nger than it
W3,c) with the

width. Since
f gzz is a line

Space Physics, 

                    
 

                    
 

(e) 

e presence of 1
a binary system
ion of black cir

d 
e 
d 
e 
g 
d 
e 
e 
) 
s 
e 
e 

e, 

not 
be 
the
win
MS
for 
win
mo
of t
(15
ind
dire
the 
Tab

Vol. 44, No. 4,

                  

                  

5% random Ga
m. White circles 
rcle toward the a

t a point, the
positioned a
edges. For 

ndow, W3,c, 
SE, whereas 

3D masses.
ndow center
del. Figure 3
the horizonta
%). For the

dicative of a 2
ection approx
dike very w

ble 1 and Fig

, Winter 2019

(b)               

(d)               

aussian noise fo
show real COM

adjacent model

e center of t
anywhere on

a 2D mass
gives the b
square wind

. The third e
r specifies t
3(a) indicate
al cylinder in
e vertical dik
2D body. Th
ximates the 

well. The res
gure 3(b).  

 
                    

 
                    

or: a) sphere; b)
Ms and black o
l in (e) is obviou

the window 
n this line e
s, the rectan
best solution
dows are su
eigenvector 
the strike o

es gzz contou
n a noisy con
ke (B), I= 0
he estimated 
real orientat

sults are sho

 

         

         

) prism; 
ones are 
us. 

could 
except 
ngular 
n with 
uitable 
at the 

of the 
ur map 
ndition 
0.12 is 

strike 
ion of 

own in 



At th
mode
transv
depth
horiz
100m
respe
than 
system
Figur
windo
show
indica
cylind
than 
repre
estim
 
5. Ca
One 
the U
 

Figure

 

Locat

he last stag
els, the in
versely horiz
hs is studied 
ontal cylinde

m, 20m) an
ectively (Tab

the thresho
m is regarde
re 3(c), the 
ow and the e

wn. The solu
ates that the
der (its field
the lower 

sentative of 
mated COM o

ase study 
of the m

United Stat

     

e 3. Smoothed 
direction o
direction o
are the be
indicate th

tion and dimen

ge of analy
nterfering e
zontal cylind
(Figure 1(c))
er (A) and (B
nd (100m, 

ble 1). Since 
old value (0
ed as a quas
gzz map to

estimated str
ution for the
 characterist
d) are stron
one. The 
real and bla

of the system

ost famous
tes is Hum

               (a) 

gzz component 
of 0◦ (relative 
of 60◦ (relative 
est estimated lo
he estimated stri

nsionality estim

yzing synth
effect of 
ders in diffe
). The center
B) are in (10

100m, 40
“I=0.39” is 

0.5), the bin
si-2D model
gether with 
ike direction
e binary sys
tics of the up
nger in the 
white circle
ck one indic

m. 

 oil fields 
mble Oil Fi

                   

of the CGGT i
to x axis) alon
to x axis); c) a

ocations and th
ike directions.

mation of geolo

 

hetic 
two 

erent 
rs of 
00m, 
0m), 
less 

nary 
l. In 

the 
n are 
stem 
pper 
data 
e is 
cates 

of  
ield. 

                   
 

(c) 
in presence of 1
ng with its thr
a binary system
he vectors in th

ogical bodies u

Reservoir ro
and limesto
about geolo
Nettelton (
El-Araby (1
data in thi
estimated th
dome as 4.9
Constituting
Bouguer gr
solution by 
window, Wf

km bearin
approximate
turn, 0.99 an
contour map
estimated 
(X=17.47±0
Z=4.61±0.04
Figure 4 sh
and window

                  

15% noise for: 
ree types of wi

m of cylinders. W
he center of th

using eigenvect

ocks of thi
ne rocks. F
ogy refer t
(1976) and 
1996) used 
is area (N
he depth co

97 km and 4
g CGGT co
ravity data, 
our method 

f, with dimen
ng 121 
ed I and M
nd 1.08%. F
p of this ge

COM 
0.01 km, 
4 km). The b
how this bes

w, in turn.  

     (b)          

 

a) infinite horiz
indows; b) ver
White circles a

he windows at 

tors of …         

s area are 
or more inf

to Nettleton
Abdelrahm

the Bouguer
ettleton, 19
omponent o
.60 km, resp

omponents f
the best 

was resulte
nsions of 5.5
data point

MSE values 
Figure 4 indi
eologic struc
of which
Y=12.11±0.

black circle a
st estimated 

                    

zontal cylinder 
rtical dike (B) 
are real COMs, 

(xmax=100m, y

              69 

andesitic  
formation 
n (1962). 
man and  
r gravity 

962) and 
of a salt 
pectively. 
from this 
extracted 

ed from a 
5 km×5.5 
ts. The 
were, in 
icates gzz 
cture, the 
h was 
01 km, 

and Wf in 
solution 

 
              

with strike 
with strike 
black ones 

ymax=100m) 



70             

In the m
and Abd
horizont
discusse
compone
quantitat
Addition
appeared
not discu
their off
other s
contrast,
contents
attained 
that the 
notewort
Abdelrah
isolated,
while ou
noisy, s
models 
dimensio
work in 
 

Figure 4. 

 
6. Concl
Integrati
derivativ
procedur
approach
interpret
resistanc
imposing
Averagin
be slight
Beiki a
solutions

                        

methods prese
delrahman an
tal location
d. Howev
ents of CO
tively by 
nally, even 
d to be a no
uss and rega
fered techni
surveys in 
, noise effect
 of our app
I=0.99 in ou
mass is almo
thy that in th
hman and 
 simple shap
ur methodol
olitary and 

are also
ons, unlike t
two dimensi

gzz component 
Humble city, U
most suitable 
including 121
represents the e

lusion 
ing Hilbert
ve calculati
re, this paper
h to he
tation proce
ce of thi
g Moving
ng and Upw
tly lower th

and Pederse
s for both so

  Journal of th

ented by Net
nd El-Araby

n of COM
ver, the 
M could be

our m
though H

oise free regi
ard the effec
ques to ext
different r

t constitutes 
proach. Furth
ur methodolo
ost a pure 3-
he case of sim

El-Araby
ped and noise
logy serves 
interfering s
 analyzed 

those that pu
ions. 

of CGGT for a
USA. The dim
window are 5

1 data points
estimated COM

t Transfor
ions and l
r presents an
eighten th

ess. Althoug
s methodo

g Twenty-
ward Continu
han the one p

n (2010), 
olitary and b

he Earth and S

ttelton (1976
y (1996), the

M was no
horizonta

e pinpointed
methodology
Humble area
ion, they did
ct of noise in
end them to
regions. By
considerable
hermore, the
ogy indicate
-D mass. It i
mulated data

y examined
eless models
to complex

sources. The
in three

ublished thei

a salt dome, nea
mensions of th
5.5 km×5.5 km
. Black circl

M. 

rm, gravity
least square

n independen
he gravity

gh the noise
ology (afte
-five Poin
uation) migh
presented by
its obtained
inary model

Space Physics, 

) 
e 

ot 
al 
d 

y. 
a 
d 
n 
o 
y 
e 
e 
s 
s 

a, 
d 
s, 
x, 
e 
e 
r 

 
ar 
e 

m 
e 

y 
e 

nt 
y 
e 
r 

nt 
ht 
y 
d 
s 

are 
priv
Def
mo
and
qua
by 
any
the 
usin
extr
pro
gra
tech
info
furt
dim
that
rou
 
Ref
Abd

Ast

Bel

Bel

Bei

Chi

Dra

Dro

Vol. 44, No. 4,

still fairly
vileges in e
finitely, it co
ney. It also

d dependabl
ality of gravi

measuring 
y purpose, an

data with h
ng the grav
ra expenses

ovided. Som
vity data is
hnique could
ormation, b
ther knowled

mensions and
t may not b

utine Bougue

ferences  
delrahman, 
1996, Shap
moving a
anomalies. 
Geophysics,
ter, R. C., B
2003, Param
Problems. E
ll, R. E., A
1997, Grav
The Leading
ll, R. E. and
and fall of e
torsion balan
Edge, 17, 81
iki, M. an
Eigenvector 
gradient ten
Geophysics,
ilders, V. A
M., 1999,
investigation
61–69. 
ansfield, M.
gradiometry
deposits. Pr
Fifth Decen
on Minera
Milkereit, B
oujinine, A., 
2007, Feasi
gradient FT
lateral densi

, Winter 2019

y accurate. 
employing t
ould save us
 gives rise 
le results a
imetry interp
gz (Bouguer

n additional s
higher resolu
ity field der
s, time and

metimes, the
 just gz, an
d give us mu
because, ap
dge about a 
d strike dir
be obtained 
r gravity dat

E. M. and
e and depth
average r

Journal 
 36, 89-95. 

Borchers, B. 
meter Estima
lsevier. 

Anderson, R. 
vity gradiom
g Edge, 16, 5
Hansen, R. 

early oil field
nce gradiom
1-83. 
nd Pedersen

analysis 
sor to locate
 75(6), I37–I
., Bell, R. E

Airborne 
n of filtering

 H., 2007,
y in the rese
oceedings o

nnial Internat
al Explorat
., 341-354. 
Vasilevsky, 
ibility of u
G data for 
ity contrasts

There are 
this methodo
s time, energ
to more acc

and enhance
pretations. In
r gravity da
strategy to an
ution (becau
rivatives) w
d field wo
e only ava

nd employing
uch more val
art from C
 causative b

rection is yi
precisely th

ta.  

El-Araby, T
h solutions 

residual g
of Ap

and Thurbe
ation and In

and Pratso
metry resur
55–59. 
O., 1998, Th
d technology

meter. The Le

n, L. B., 
of the g

e geologic b
I49. 

E. and Broze
gravimetry

g. Geophysic

Airborne g
earch for m

of Exploratio
tional Confe
tion, edited

A. and Evan
using full t
detection of
s during res

 

some 
ology. 

gy and 
curate 

es the 
n fact, 
ata) to 
nalyze 
use of 

without 
ork is 
ailable 
g this 
luable 
COM, 
body’s 
ielded 

hrough 

T. M., 
from 

gravity 
pplied 

er, C., 
nverse 

on, L., 
rfaces. 

he rise 
y: The 
eading 

2010, 
gravity 
bodies. 

ena, J. 
: An 
cs, 64, 

gravity 
mineral 
on 07: 
erence 
d by 

ns, R., 
tensor 

f local 
ervoir 



Location and dimensionality estimation of geological bodies using eigenvectors of …                       71 

 

monitoring. Geophysical Journal 
International, 169, 795– 820. 

Edwards, A. J., J. Maki, T. and Peterson, D. 
G., 1997, Gravity gradiometry as a tool 
for underground facility detection. Journal 
of Environmental & Engineering 
Geophysics, 2(2), 137–143. 

Fedi, M., Ferranti, L., Florio, G., Giori, I. and 
Italiano, F., 2005, Understanding the 
structural setting in the southern 
Apennines Italy: Insight from gravity 
gradient tensor. Tectonophysics, 397(1–
2), 21–36. 

Fitz Gerald, D., Argast, D., Paterson, R. and 
Holstein, H., 2009, Full tensor magnetic 
gradiometry processing and interpretation 
developments. 11th South African 
Geophysical Association SAGA. 

Hatch, D., 2004, Evaluation of a full tensor 
gravity gradiometer for kimberlite 
exploration. The ASEG-PESA Airborne 
gravity workshop, Extended Abstracts, 
73–80. 

Hinojosa, J. H. and Mickus, K. L., 2002, 
Hilbert transform of gravity gradient 
profiles: Special cases of the general 
gravity-gradient tensor in the Fourier 
transform domain. Geophysics, 67(3), 
766–769. 

Mikhailov, V., Pajot, G., Diament, M. and 
Price, A., 2007, Tensor deconvolution: A 
method to locate equivalent sources from 
full tensor gravity data. Geophysics, 
72(5), I61–I69. 

Murphy, C. A. and Brewster, J., 2007, Target 
delineation using full tensor gravity 
gradiometry data. Extended Abstract, 
ASEG-PESA 19th International 
Geophysical Conference and Exhibition, 
Perth, Australia. 

Nabighian, M. N., 1984, Toward a three-
dimensional automatic interpretation of 
potential field data via generalized Hilbert 
transforms: Fundamental relations. 
Geophysics, 49(6), 780-786. 

Nettleton, L. L., 1962, Gravity and magnetic 
for geologists and seismologists. AAPG 
Bulletin, 46, 1815-1838.  

Nettelton, L. L., 1976, Gravity and 
Magnetics in oil prospecting. McGraw-
Hill, New York. 

Oruc, B., 2010, Depth Estimation of Simple 
Causative Sources from Gravity Gradient 
Tensor Invariants and Vertical 

Component. Pure. Appl. Geophys. 167, 
1259–1272. 

Pajot, G., de Viron, O., Diament, M., 
Lequentrec-Lalancette, M. F. and 
Mikhailov, V., 2008, Noise reduction 
through joint processing of gravity and 
gravity gradient data. Geophysics, 73(3), 
I23–I34. 

Pedersen, L. B. and Rasmussen, T. M., 1990, 
The gradient tensor of potential field 
anomalies: Some implications on data 
collection and data processing of maps. 
Geophysics, 55, 1558–1566. 

Pawlowski, B., 1998, Gravity gradiometry in 
resource exploration. The Leading Edge, 
17, 51–52. 

Routh, P., Jorgensen, G. J. and Kisabeth, J. 
L., 2001, Base of the salt mapping using 
gravity and tensor gravity data. 70th 
Annual International Meeting, SEG, 
Expanded Abstracts, 1482–1484. 

Vasco, O. W. and Taylor, C., 1991, Inversion 
of airborne gravity gradient data, 
southwestern Oklahoma. Geophysics, 56, 
90–91. 

While, J., Biegert, E. and Jackson, A., 2009, 
Generalized sampling interpolation of 
noise gravity/gravity gradient data. 
Geophysical Journal International, 178, 
638–650. 

While, J., Jackson, A., Smit, D. and Biegert, 
E., 2006, Spectral analysis of gravity 
gradiometry profiles. Geophysics, 71(1), 
J11–J22. 

Zhdanov, M. S., Ellis, R. and Mukherjee, S., 
2004, Three-dimensional regularized 
focusing inversion of gravity gradient 
tensor component data. Geophysics, 69, 
925–937. 

Zhang, C., Mushayandebvu, M. F., Reid, A. 
B., Fairhead, J. D. and Odegard, M., 
2000, Euler deconvolution of gravity 
tensor gradient data. Geophysics, 65, 
512–520. 

Zhou, W., 2016, Depth Estimation Method 
Based on the Ratio of Gravity and Full 
Tensor Gradient Invariant. Pure.  Appl. 
Geophys, 173(2), 499-508.  


