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Abstract 
In this paper, a new method of ionospheric tomography is developed and evaluated based on the 
neural networks (NN). This new method is named ITNN. In this method, wavelet neural network 
(WNN) with particle swarm optimization (PSO) training algorithm is used to solve some of the 
ionospheric tomography problems. The results of ITNN method are compared with the residual 
minimization training neural network (RMTNN) and modified RMTNN (MRMTNN). In all three 
methods, empirical orthogonal functions (EOFs) are used as a vertical objective function. To apply 
the methods for constructing a 3D-image of the electron density, GPS measurements of the Iranian 
permanent GPS network (in three days in 2007) are used. Besides, two GPS stations from 
international GNSS service (IGS) are used as test stations. The ionosonde data in Tehran 
(φ=35.73820, λ=51.38510) has been used for validating the reliability of the proposed methods. 
The minimum RMSE for RMTNN, MRMTNN, ITNN are 0.5312, 0.4743, 0.3465 (1011ele./m3) 
and the minimum bias are 0.4682, 0.3890, and 0.3368 (1011ele./m3) respectively. The results 
indicate the superiority of ITNN method over the other two methods.   
 
Keywords: Tomography, RMTNN, MRMTNN, ITNN, GPS.  

 
1. Introduction 
In the last two decades, knowledge of the 
distribution of the ionospheric electron 
density is considered as a major challenge for 
geodesy and geophysics researchers. To 
study the physical properties of the 
ionosphere, tomography indicated an 
efficient and effective method. Usually the 
value of total electron content (TEC) used as 
an input parameter to tomography. Then, 
inversion methods used to compute the 
electron density at any time and space. 
However, ionospheric tomography is 
considered as an inverse ill-posed problem 
due to the lack of input observations and non-
uniform distribution of TEC data. 
Tomography is a mathematical technique to 
reconstruct three-dimensional images and is 
best known for the reconstruction of the 
human body from the X-ray measurements 
(Amerian et al., 2010). Many algorithms and 
methods are presented for modeling the 
ionospheric tomography. For the first time, 
Austen et al. (1988) proposed the idea of 
using satellite radio tomography to study the 
ionospheric electron density. After that, 
reconstruction of the ionospheric electron 
density using tomography has become a 

popular and successful way of studying the 
detailed features of the ionosphere. Extensive 
research in ionospheric tomography offers 
several advantages over traditional ground-
based instruments such as incoherent 
backscatter radars and ionosonde. Kunitsyn 
et al. (2011) used ionospheric radio 
tomography based on data from high orbital 
navigation systems. The minimum Sobolev’s 
norm was suggested for finding the solution. 
Pokhotelov et al. (2011) used 4D tomography 
reconstruction to detect the ionosphere 
anomalies in the high-latitude polar cap 
region. Wen et al. (2012) presented a new 
tomographic algorithm, termed two-step 
algorithm (TSA). In this method, electron 
density is estimated in two steps: Phillips 
smoothing method (PSM) is used to resolve 
the ill-conditioned problem and the PSM 
solution is input as an initial value to the 
algebraic reconstruction technique. Van de 
Kamp (2013) examined the ionosphere above 
Scandinavia by 4-dimensional tomography 
using the software package MIDAS from the 
University of Bath. Ghaffari Razin (2015) 
expanded 3D ionosphere tomography by 
combining the spherical harmonics and *Corresponding author:                                                                                                  mr.ghafari@arakut.ac.ir 
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empirical orthogonal functions. The zero 
order Tikhonov regularization used for 
parameter estimations. Ghaffari Razin and 
Voosoghi (2016) developed local ionosphere 
tomography model over Iran using spherical 
cap harmonics (SCHs). 
Although the results of all studies indicate 
high efficiency of ionospheric tomography, 
two major limitations can be considered to 
this method: First, due to the poor spatial 
distribution of GPS stations and limitations 
of signal viewing angle, computerized 
ionospheric tomography (CIT) is an inverse 
ill-posed problem. Second, in most cases, 
observations are discontinuous in time and 
space domain; therefore, it is not possible 
determining the density profiles at any time 
and space around the world. For solving the 
mentioned problems, it is necessary to extend 
a suitable local model with high spatial-
temporal resolution that uses GNSS 
observations. Artificial neural networks 
(ANNs) are one of the new ideas to solve the 
mentioned problems.  
ANN is a set of information processing 
system that has been formed by simple 
processing elements called artificial neurons. 
Methods of artificial intelligence provide a 
valuable tool for modeling of the nonlinear 
behavior of the ionosphere (Habarulema et 
al., 2009; Yilmaz et al., 2009; Ghaffari Razin 
et al., 2015). For the first time, Ma et al. 
(2005) demonstrated the idea of using an 
ANNs to solve the ionospheric tomography. 
They used standard ANN (SANN) with back-
propagation (BP) algorithm to train the 
network. Besides, they used ionosonde 
observations for improving the vertical 
resolution. After it, Hirooka et al. (2011) 
used the same ANN for modeling the 
ionospheric electron density distributions. 
They used low earth orbit (LEO) 
observations as vertical constraints and 
updated neural weights using these 
information. Low accuracy in the vertical 
domain is the major disadvantage of these 
two studies. In order to solve the low 
accuracy in vertical domain, Ghaffari Razin 
and Voosoghi (2016) used empirical 
orthogonal functions (EOFs) as vertical 
constraints. Despite the improvement in the 
vertical accuracy due to the use of EOF, 
accuracy of time domain is low.  
The goal of this paper is to develop and 

evaluate a new method of ionosphere 
tomography using wavelet neural network 
(WNN) and particle swarm optimization 
(PSO) training algorithm. This new method 
called ionospheric tomography based on the 
neural networks (ITNN). Using this method, 
it is possible to obtain the ionospheric 
electron density temporal and spatial 
variations in high accuracy and resolution. 
Besides, total electron content (TEC) in any 
desired positions can be computed. All of the 
results in this paper compared with the 
residual minimization training neural 
network (RMTNN) and modified RMTNN 
(MRMTNN). SANN and WNN have been 
used as base neural networks (NNs). Back-
propagation (BP) and particle swarm 
optimization (PSO) algorithms are used for 
training these methods. Observations of three 
days in 2007 (2007.01.03, 2007.04.03 and 
2007.07.13) is selected to apply the methods. 
To validate and better assess the reliability of 
the proposed method, two GPS stations from 
international GNSS service (IGS) are used as 
test stations. The accuracy of the results is 
controlled with Tehran ionosonde 
measurements. Statistical indicators as, root 
mean square error (RMSE), bias and dVTEC 
(reconstructed TEC – observed TEC) are used to 
assess the results. 
        

2. Measurements 
Using ground–based GPS receivers, it is 
possible to compute slant TEC (STEC),  that 
is one of the most important data sources in 
ionospheric researches. Carrier phase derived 
STEC (STECL) and code pseudo- ranges 
STEC (STECP) are calculated with the 
following equations: 
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where 1f and 2f are signal frequency, 1L and 

2L are the carrier phase measurements, 1  

and 2  are the wavelengths, 1P  and 2P are 

the code pseudo- ranges measurements. 
Carrier phase derived LSTEC depending on 

the ambiguity parameters while the  
code derived PSTEC observation is noisy. 
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To reduce the multipath and noise level in the

PSTEC , the carrier phase measurements are 

used to compute a more precise relative 
STEC observable. In this approach, the 
continuous arcs of LSTEC are adjusted to the 

mean value of the corresponding code 

PSTEC value. The mean value is computed 
for every continuous arc using: 
 

 
i

N

i
LPLP STECSTEC

N
STECSTEC 




1

1

                                                                  (3) 

where N is the number of continuous 
measurements contained in the arc. 
Subtracting Equation (1) from (3), the 
smoothed STEC can be derived: 
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where P
rB  and P

sB  are the receiver and 

satellite code-delay inter-frequency bias 
(IFB) in TECU (1016 ele./m2) respectively, 
and 4P is the combination of multipath and 

measurement noise on 1P  and 2P  in TECU 

(1016 ele./m2). 
 
 

3. Ionospheric tomography using neural 
networks 
ANNs have demonstrated to be an ideal tool 
for the prediction of ionospheric variations 
(time and space dependent), which is by 
nature highly non-linear. A main benefit of 
using ANNs for the prediction of ionospheric 
variations  
over analytical methods is that no previous 
information of the nature of the non-linear 
relationships is needed. The first idea of 
using ANNs in the ionospheric tomography 
was provided by Ma et al., (2005). They used 
the method described by Liaqat et al., (2003) 
namely residual minimization training neural 
network (RMTNN). In the next section, this 
method will be explained briefly. 
 
 

3-1. Residual minimization training neural 
network (RMTNN) 
STEC as the integrated value of the 
ionospheric and plasmaspheric electron 

density can be calculated using Equation (5): 

  s
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r

smoothed PdstrNSTEC   ,
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                     (5)  

where  trN ,


 shows the electron density at 

the position r


and observational time t , s
rP  

is the contribution of the plasmaspheric 
electron density, r and s indicate total number 
of receivers and satellites, respectively. 
Computational domain is divided ionospheric 
region (100 km to 1000 km) and 
plasmaspheric region (above 1000 km). With 
discretize of Equation (5) can be written: 
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where d show a mesh point (the symbol D is 
the total number of the mesh points) and β 
corresponding weight in the numerical 
integration. To see the role of β in numerical 
integration, please refer to Quarteroni et al. 
(2007, Chapter 9). Using Equation (6), it can 
be defined the cost function as follows: 
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The most significant drawback of the 
ionospheric tomography is low accuracy in 
the vertical domain. To compute the vertical 
cost function, empirical orthogonal functions 
(EOFs) is used. Using this method, the neural 
network is trained and the vertical cost 
function is given as: 
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                            (8)  

where G is the number of EOF, )(rN g


 is the 

output of the neural network, and EOF
gN is 

the EOFS electron density for the position (r). 
Thus, the total cost function is considered as 
follows: 

21 CbCC                                             (9)  

where b is a balance parameter between the 
EOFs and GPS results. To select the value of 
b, the amount of error in the cost function C 
is used. If the value of cost function C is  
below 2×1011 (ele./m3), the neural network is 
converged to the optimal result. This value 
has been empirically determined. As a result, 
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b = 0.94 is selected as the balance parameter. 
The weight updating process of the neural 
network for the cost functions C1 and C2 is 
derived for the nth path as follows: 
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Where n indicates the ray path, NN
nI is the 

output data of the neural network, nI  is the 

real data (obtained using Equation 6), the 
weight of the main neural network is w and 
  is the learning rate. 

 
3-2. Modified residual minimization 
training neural network (MRMTNN) 
In the RMTNN method, SANN is used. The 
standard sigmoid ANNs have a series of 
disadvantages. Typically, the initial weights 
of the ANN are randomly selected in these 
networks. Randomly chosen initial weights 
of network are increasing significantly 
training time. Moreover, when the activation 
function is of sigmoidal type, there is always 
remarkable change that the training algorithm 
will converge to local minima. Finally, there 
is no logical connection between the 
activation function, optimal network 
structure and the complexity of the 
mathematical model. Therefore, instead of 
using the conventional sigmoid activation 
functions can be used wavelet neural 
network. The WNN employing non-linear 
wavelet basis functions (named wavelets), 
which are localized in both the time and 
frequency space, has been extended as an 
alternative approach to non-linear fitting 
problem (Alexandridis and Zapranis, 2013). 
In WNNs the network output is given by 
Equation (12): 
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where x is the input vector,  xj  is a 

multi-dimensional wavelet that is constructed 
by the product of m scalar wavelets, m is the 
number of inputs, λ is the number of hidden 
units and ω shows for a network weight. 
Multi-dimensional wavelets can be calculated 
by Equation (13): 
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Where   is the mother wavelet and can be 

written as: 

ij

iji
ij b

ax
z


                                             (14)  

In Equation (14), 
1,...,1,,...,1  jmi  and the 

weights ω is related to the translation ( ija ) 

and the dilation ( ijb ) parameters. The choice 

of the mother wavelet depends on the 
applications. The activation function can be 
considered orthogonal wavelets (wavenet) or 
continuous wavelets (wave frame). In this 
paper, the Mexican hat function is used as a 
mother wavelet. This wavelet has many 
benefits and shown satisfactory results in 
other applications. Analytical form of the 
Mexican hat function is as follows:  
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For optimizing the initialization of the 
wavelet parameters, various methods have 
been proposed. The translation and dilation 
parameters are used as follows (Zhang and 
Benveniste, 1992):  

 iiij MNa  5.0                                    (16)  

 iiij NMb  2.0                                    (17)  

where iN  and iM  are defined as the 

minimum and maximum of input ix . 

 
3-3. Ionospheric tomography based on the 
neural network (ITNN) 
The usually used training algorithm for ANN 
and WNN is back-propagation (BP) 
algorithm, which is a gradient-based method. 
The BP algorithm easily falls into the trap of 
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local minima, especially for complex 
function approximation problem. Therefore, 
the BP algorithm is weak to find a global 
optimal solution. Besides, the speed of 
convergence to the optimal solution is very 
low in this algorithm. Other key issues in this 
algorithm can be considered: dependence on 
the initial values of the weights, as well as 
the optimal selection of the parameters such 
as the learning rate and the momentum. This 
disadvantage can be removed by an 
exploration ability of the evolutionary 
algorithms such as particle swarm 
optimization (PSO). For the first time, 
Kennedy and Eberhart (1995) proposed the 
PSO algorithm as a population-based 
optimization method. A PSO algorithm is 
inspired by the movements of the best 
member of the population and at the same 
time by their own experience. This metaphor 
indicates that a set of solutions is moving in a 
search space with the aim to achieve the best 
position or solution. Table 1 demonstrates the 
PSO learning algorithm. 
In Table 1, P is the particle swarm, ix  is  

the position of a particle, iv  is the velocity 

of a particle,   is component-wise 
multiplication, and  i,0U  is a random 

numbers vector uniformly distributed in the 

interval  i,0 . Unlike BP, PSO is a global 

search and population-based algorithm used 
for training neural networks, finding neural 
network architectures, tuning network 
learning parameters and optimizing network 
weights. PSO avoids trapping in a local 
minimum, because it is not based on gradient 
information. The equations used in this 
algorithm are considered as follows: 
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Where w is inertia weight, t
iv  is the velocity 

of particle i at iteration t, c1 and c2 are 
acceleration coefficients, rand is a random 
number within [0,1], t

ix  defines the current 

location of particle i at iteration t, pbesti 
demonstrates the pbest of factor i at iteration 
t, and gbest is the best solution so far. In each 
iteration, the velocities of particles are 
calculated by Equation (18). Then, the 
locations of particles are computed by 
Equation (19). The particle positions will be 
varied until a stopping condition is met. 

 
Table 1. The PSO algorithm. 

Particle Swarm Optimization (PSO) Algorithm  

    Create and initialize particles 

    repeat 

      For all Pxi  do 

        Compute fitness of particle  ixf  

        If    ii pfxf  then 

          ii xp   

        End if 

        If    gi pfxf  then 

         ig xp   

        End if 

             igiiii xpUxpUvv  21 ,0,0   

       iii vxx   
      End for 

Until termination criterion is met 
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Using results in Figure 3, it can be seen 
clearly that the results of the ITNN 
(VTECITNN) method are much closer to the 
results of the GPS observations (VTECGPS). 
In the other words, the numerical value of the 
dVTEC in ITNN method is much less than 
other methods. Another important point, it 
can be investigated in Figure 3, is low 
accuracy of the results of the IRI-2012 
model. The IRI-2012 model used ionosonde 
observations for modeling the ionosphere 
variations. Due to the small number of these 
stations in the world, the results of this model 
are not accurate. For analyzing the accuracy 
of the methods in ionospheric electron 
density reconstruction, results compare with 
ionosonde direct measurements. Figure 4 
indicates the scatter plot for RMTNN, 
MRMTNN and ITNN electron density with 
corresponding electron density from the 
ionosonde in three days of 2007 with lines of 
best fit showed for all cases. 
Using Figure 4, it is clearly visible that the 
ITNN method is highly correlated to 

ionosonde measurements with a correlation 
coefficient (R) of 0.901. The values  
of correlation coefficient between MRMTNN 
and RMTNN with ionosonde measurements 
are 0.860 and 0.826, respectively.  
These results again indicate that the original 
ionospheric reconstruction method 
(RMTNN) is improved. After assessing  
the accuracy of the proposed methods, it  
is possible to draw profiles of time-dependent 
ionosphere electron density. The results  
of this analysis are shown in Figures 5, 6  
and 7. In these figures, reconstructed electron 
density profiles using RMTNN, MRMTNN 
and ITNN were compared with ionosonde 
profiles. All these comparisons have  
been conducted for heights of 200, 250, 300 
and 350 Km in three days of 2007 
(2007.01.03, 2007.04.03 and 2007.07.13). 
Using these figures, it is obvious that the 
peak of electron density occurs in 08:00 to 
10:00 UT, and also temporal variation of 
ionospheric electron density can be seen 
clearly. 

 

 

   
Figure 4. Scatter plots for ionosonde electron density and corresponding reconstructed electron density values using 

RMTNN (left panel), MRMTNN (middle panel) and ITNN (right panel) in three days of 2007. 
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