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Abstract

In this paper, a new method of ionospheric tomography is developed and evaluated based on the
neural networks (NN). This new method is named ITNN. In this method, wavelet neural network
(WNN) with particle swarm optimization (PSO) training algorithm is used to solve some of the
ionospheric tomography problems. The results of ITNN method are compared with the residual
minimization training neural network (RMTNN) and modified RMTNN (MRMTNN). In all three
methods, empirical orthogonal functions (EOFs) are used as a vertical objective function. To apply
the methods for constructing a 3D-image of the electron density, GPS measurements of the Iranian
permanent GPS network (in three days in 2007) are used. Besides, two GPS stations from
international GNSS service (IGS) are used as test stations. The ionosonde data in Tehran
(9=35.73820, A=51.38510) has been used for validating the reliability of the proposed methods.
The minimum RMSE for RMTNN, MRMTNN, ITNN are 0.5312, 0.4743, 0.3465 (10" 'ele./m®)
and the minimum bias are 0.4682, 0.3890, and 0.3368 (10''ele./m’) respectively. The results

indicate the superiority of ITNN method over the other two methods.

Keywords: Tomography, RMTNN, MRMTNN, ITNN, GPS.

1. Introduction

In the last two decades, knowledge of the
distribution of the ionospheric electron
density is considered as a major challenge for
geodesy and geophysics researchers. To
study the physical properties of the
ionosphere, tomography indicated an
efficient and effective method. Usually the
value of total electron content (TEC) used as
an input parameter to tomography. Then,
inversion methods used to compute the
electron density at any time and space.
However, ionospheric tomography is
considered as an inverse ill-posed problem
due to the lack of input observations and non-
uniform distribution of TEC data.
Tomography is a mathematical technique to
reconstruct three-dimensional images and is
best known for the reconstruction of the
human body from the X-ray measurements
(Amerian et al., 2010). Many algorithms and
methods are presented for modeling the
ionospheric tomography. For the first time,
Austen et al. (1988) proposed the idea of
using satellite radio tomography to study the
ionospheric electron density. After that,
reconstruction of the ionospheric electron

popular and successful way of studying the
detailed features of the ionosphere. Extensive
research in ionospheric tomography offers
several advantages over traditional ground-
based instruments such as incoherent
backscatter radars and ionosonde. Kunitsyn
et al. (2011) wused ionospheric radio
tomography based on data from high orbital
navigation systems. The minimum Sobolev’s
norm was suggested for finding the solution.
Pokhotelov et al. (2011) used 4D tomography
reconstruction to detect the ionosphere
anomalies in the high-latitude polar cap
region. Wen et al. (2012) presented a new
tomographic algorithm, termed two-step
algorithm (TSA). In this method, electron
density is estimated in two steps: Phillips
smoothing method (PSM) is used to resolve
the ill-conditioned problem and the PSM
solution is input as an initial value to the
algebraic reconstruction technique. Van de
Kamp (2013) examined the ionosphere above
Scandinavia by 4-dimensional tomography
using the software package MIDAS from the
University of Bath. Ghaffari Razin (2015)
expanded 3D ionosphere tomography by
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empirical orthogonal functions. The zero
order Tikhonov regularization used for
parameter estimations. Ghaffari Razin and
Voosoghi (2016) developed local ionosphere
tomography model over Iran using spherical
cap harmonics (SCHs).

Although the results of all studies indicate
high efficiency of ionospheric tomography,
two major limitations can be considered to
this method: First, due to the poor spatial
distribution of GPS stations and limitations
of signal viewing angle, computerized
ionospheric tomography (CIT) is an inverse
ill-posed problem. Second, in most cases,
observations are discontinuous in time and
space domain; therefore, it is not possible
determining the density profiles at any time
and space around the world. For solving the
mentioned problems, it is necessary to extend
a suitable local model with high spatial-
temporal resolution that wuses GNSS
observations. Artificial neural networks
(ANNSs) are one of the new ideas to solve the
mentioned problems.

ANN is a set of information processing
system that has been formed by simple
processing elements called artificial neurons.
Methods of artificial intelligence provide a
valuable tool for modeling of the nonlinear
behavior of the ionosphere (Habarulema et
al., 2009; Yilmaz et al., 2009; Ghaffari Razin
et al.,, 2015). For the first time, Ma et al.
(2005) demonstrated the idea of using an
ANNSs to solve the ionospheric tomography.
They used standard ANN (SANN) with back-
propagation (BP) algorithm to train the
network. Besides, they used ionosonde
observations for improving the vertical
resolution. After it, Hirooka et al. (2011)
used the same ANN for modeling the
ionospheric electron density distributions.
They wused low earth orbit (LEO)
observations as vertical constraints and
updated neural weights using these
information. Low accuracy in the vertical
domain is the major disadvantage of these
two studies. In order to solve the low
accuracy in vertical domain, Ghaffari Razin
and Voosoghi (2016) wused empirical
orthogonal functions (EOFs) as vertical
constraints. Despite the improvement in the
vertical accuracy due to the use of EOF,
accuracy of time domain is low.

The goal of this paper is to develop and

evaluate a new method of ionosphere
tomography using wavelet neural network
(WNN) and particle swarm optimization
(PSO) training algorithm. This new method
called ionospheric tomography based on the
neural networks (ITNN). Using this method,
it is possible to obtain the ionospheric
electron density temporal and spatial
variations in high accuracy and resolution.
Besides, total electron content (TEC) in any
desired positions can be computed. All of the
results in this paper compared with the
residual minimization training neural
network (RMTNN) and modified RMTNN
(MRMTNN). SANN and WNN have been
used as base neural networks (NNs). Back-
propagation (BP) and particle swarm
optimization (PSO) algorithms are used for
training these methods. Observations of three
days in 2007 (2007.01.03, 2007.04.03 and
2007.07.13) is selected to apply the methods.
To validate and better assess the reliability of
the proposed method, two GPS stations from
international GNSS service (IGS) are used as
test stations. The accuracy of the results is
controlled with Tehran ionosonde
measurements. Statistical indicators as, root
mean square error (RMSE), bias and dVTEC
(reconstructed tgc — observed Tgc) are used to
assess the results.

2. Measurements

Using ground—based GPS receivers, it is
possible to compute slant TEC (STEC), that
is one of the most important data sources in
ionospheric researches. Carrier phase derived
STEC (STEC.) and code pseudo- ranges
STEC (STECp) are calculated with the
following equations:

STECL — (.fl fz )2

m(lﬂil _inz) (D

2
stec, LS ppy
40.3( =15 )
where f and f,are signal frequency, L and
L, are the carrier phase measurements, A,
and A, are the wavelengths, P, and P, are
the code pseudo- ranges measurements.
Carrier phase derived STEC, depending on

the ambiguity parameters while the
code derived STEC, observation is noisy.



Application of Wavelet Neural Networks for Improving of Ionospheric Tomography ... 101

To reduce the multipath and noise level in the
STEC,, the carrier phase measurements are

used to compute a more precise relative
STEC observable. In this approach, the

continuous arcs of STEC, are adjusted to the
mean value of the corresponding code
STEC, value. The mean value is computed
for every continuous arc using:

N
(STEC, + STEC,) = %Z(STECP +STEC,)

i=1 i

3)

where N is the number of continuous
measurements contained in the arc.
Subtracting Equation (1) from (3), the
smoothed STEC can be derived:

S T E C?maothed =
(STEC, +STEC, )~ STEC, = 4
STEC+(B! +B!')+¢,,

P .
where B, and B! are the receiver and

satellite code-delay inter-frequency bias
(IFB) in TECU (10'® ele./m®) respectively,

and &p,is the combination of multipath and

measurement noise on £ and P, in TECU
(10" ele./m?).

3. Ionospheric tomography using neural
networks

ANNSs have demonstrated to be an ideal tool
for the prediction of ionospheric variations
(time and space dependent), which is by
nature highly non-linear. A main benefit of
using ANNS for the prediction of ionospheric
variations

over analytical methods is that no previous
information of the nature of the non-linear
relationships is needed. The first idea of
using ANNs in the ionospheric tomography
was provided by Ma et al., (2005). They used
the method described by Liaqat et al., (2003)
namely residual minimization training neural
network (RMTNN). In the next section, this
method will be explained briefly.

3-1. Residual minimization training neural
network (RMTNN)

STEC as the integrated value of the
ionospheric and plasmaspheric electron

density can be calculated using Equation (5):

[ NG 1) + P (5)

r

STEC,

smoothed ~

where N (17 ,l) shows the electron density at

the position 7 and observational time ¢, P’

is the contribution of the plasmaspheric
electron density, r and s indicate total number
of receivers and satellites, respectively.
Computational domain is divided ionospheric
region (100 km to 1000 km) and
plasmaspheric region (above 1000 km). With
discretize of Equation (5) can be written:

D
STECsmoofhed ~ ZﬂdN(F’Z)+ Prs (6)
d=1

where d show a mesh point (the symbol D is
the total number of the mesh points) and S
corresponding weight in the numerical
integration. To see the role of £ in numerical
integration, please refer to Quarteroni et al.
(2007, Chapter 9). Using Equation (6), it can
be defined the cost function as follows:

D 2
Cl = (z ﬁdN (F’ t) + R‘S - STEC&nmmhed j (7)
d=1

The most significant drawback of the
ionospheric tomography is low accuracy in
the vertical domain. To compute the vertical
cost function, empirical orthogonal functions
(EOFs) is used. Using this method, the neural
network is trained and the vertical cost
function is given as:

C, =3 (v, () - neor ®)

g=1
where G is the number of EOF, N, (7) is the

output of the neural network, and N gE Fis

the EOFj electron density for the position (T).
Thus, the total cost function is considered as
follows:

C=bC,+C, )

where b is a balance parameter between the
EOFs and GPS results. To select the value of
b, the amount of error in the cost function C
is used. If the value of cost function C is
below 2x10"" (ele./m®), the neural network is
converged to the optimal result. This value
has been empirically determined. As a result,



102 Journal of the Earth and Space Physics, Vol. 44, No. 4, Winter 2019

b = 0.94 is selected as the balance parameter.
The weight updating process of the neural
network for the cost functions C; and C, is
derived for the n™ path as follows:

_ oG

Aw=-n—m:
B (w  p g \OL" N’ (10)
~ 77(;:1 (In + P)r Iﬂ) aNd a
AW, s ON*
~ 77:1(1}1 +Pr In) d a

U
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Aw = — £~_ < =\ _ A7EOF
w=n—*= nYy (N,())-NP") (1)

g=l1
Where n indicates the ray path, 7 is the

output data of the neural network, /, is the

real data (obtained using Equation 6), the
weight of the main neural network is w and
7 is the learning rate.

3-2. Modified residual minimization
training neural network (MRMTNN)

In the RMTNN method, SANN is used. The
standard sigmoid ANNs have a series of
disadvantages. Typically, the initial weights
of the ANN are randomly selected in these
networks. Randomly chosen initial weights
of network are increasing significantly
training time. Moreover, when the activation
function is of sigmoidal type, there is always
remarkable change that the training algorithm
will converge to local minima. Finally, there
is no logical connection between the
activation  function, optimal network
structure and the complexity of the
mathematical model. Therefore, instead of
using the conventional sigmoid activation
functions can be wused wavelet neural
network. The WNN employing non-linear
wavelet basis functions (named wavelets),
which are localized in both the time and
frequency space, has been extended as an
alternative approach to non-linear fitting
problem (Alexandridis and Zapranis, 2013).
In WNNs the network output is given by
Equation (12):

g.(xw)=7(x)=
¢ (12)

A
@+ .0V, (x)+) o.x

j=1 i=1

where x is the input vector, ¥, (x) is a

multi-dimensional wavelet that is constructed
by the product of m scalar wavelets, m is the
number of inputs, A is the number of hidden
units and @ shows for a network weight.
Multi-dimensional wavelets can be calculated
by Equation (13):

¥,(0)=]Tv,) (13)

i=1

Where y is the mother wavelet and can be

written as:

=% (14)
’ bif

In Equation (14),

i=L..m , j=1.,44+41 and the
weights o is related to the translation (a,)
and the dilation (b, ) parameters. The choice

of the mother wavelet depends on the
applications. The activation function can be
considered orthogonal wavelets (wavenet) or
continuous wavelets (wave frame). In this
paper, the Mexican hat function is used as a
mother wavelet. This wavelet has many
benefits and shown satisfactory results in
other applications. Analytical form of the
Mexican hat function is as follows:

e, )= -2 (15)

For optimizing the initialization of the
wavelet parameters, various methods have
been proposed. The translation and dilation
parameters are used as follows (Zhang and
Benveniste, 1992):

a, =0.5(N,+M,) (16)
b; =0.2(M,~N,) (17)

where N, and M, are defined as the

minimum and maximum of input X, .

3-3. Ionospheric tomography based on the
neural network (ITNN)

The usually used training algorithm for ANN
and WNN is back-propagation (BP)
algorithm, which is a gradient-based method.
The BP algorithm easily falls into the trap of
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local minima, especially for complex
function approximation problem. Therefore,
the BP algorithm is weak to find a global
optimal solution. Besides, the speed of
convergence to the optimal solution is very
low in this algorithm. Other key issues in this
algorithm can be considered: dependence on
the initial values of the weights, as well as
the optimal selection of the parameters such
as the learning rate and the momentum. This
disadvantage can be removed by an
exploration ability of the evolutionary
algorithms such as particle swarm
optimization (PSO). For the first time,
Kennedy and Eberhart (1995) proposed the
PSO algorithm as a population-based
optimization method. A PSO algorithm is
inspired by the movements of the best
member of the population and at the same
time by their own experience. This metaphor
indicates that a set of solutions is moving in a
search space with the aim to achieve the best
position or solution. Table 1 demonstrates the
PSO learning algorithm.

In Table 1, P is the particle swarm, X, is
the position of a particle, v, is the velocity
of a nparticle, ® is component-wise
multiplication, and U(O, ¢1) is a random

numbers vector uniformly distributed in the

interval [0,¢l.]. Unlike BP, PSO is a global

search and population-based algorithm used
for training neural networks, finding neural
network  architectures, tuning network
learning parameters and optimizing network
weights. PSO avoids trapping in a local
minimum, because it is not based on gradient
information. The equations used in this
algorithm are considered as follows:

v = wx v +¢ xrand x

(pbest,. —xf)+c2 x rand x (18)
(gbest—xf)

xM=xl v (19)

Where w is inertia weight, v/ is the velocity

of particle i at iteration ¢, ¢; and c, are
acceleration coefficients, rand is a random

number within [0,1], x defines the current

location of particle i at iteration ¢, pbest;
demonstrates the pbest of factor i at iteration
t, and gbest is the best solution so far. In each
iteration, the velocities of particles are
calculated by Equation (18). Then, the
locations of particles are computed by
Equation (19). The particle positions will be
varied until a stopping condition is met.

Table 1. The PSO algorithm.

repeat

Forall x; € Pdo

p; =X
End if

pg =
End if

X, =x,+v,
End for

Particle Swarm Optimization (PSO) Algorithm

Create and initialize particles

Compute fitness of particle f (x,,)

it f(x,)< f(p,) then
If f(x,)< f(p, )then
vV, = v, +U(Oa¢1)® (pi _xi)+U(0’¢2)® (pg _xi)

Until termination criterion is met
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4. Error evaluation:

In this paper, results were analyzed based on
root mean square error (RMSE) and bias.
These two indices are calculated as follows:

N
RMSE = \/ % DNV =Niporae) 20

i=1

N

_ 1
Bias ZEZ(NR

i=1

- Nionomnde ) (2 1)

Where N, is the reconstructed value of
electron density using RMTNN, MRMTNN
and ITNN, N

electron density from ionosonde, and N is
the number of sample elements. Moreover,
after reconstructed electron density using
RMTNN, MRMTNN and ITNN methods,
vertical total electron content (VTEC) is
computed and compared with the
corresponding VTEC that is obtained from
GPS measurements:

dVTEC = VTEC,,, —VTEC,, (22)

ionosonde 15 the observed value of

where VTEC,,, shows VTEC computed by

GPS measurements and VTEC,, indicates

VTEC that is reconstructed by RMTNN,
MRMTNN and ITNN methods.

5- Results and discussions:
Geodynamic studies in Iran began since

40°

32°

28"

44 48°

1998. The main objective of these
studies was to investigate variations in
the Earth's crust and tectonic movement.
Iran permanent GPS network was designed
and implemented gradually from 2004. Using
the permanent GPS network, it was created
to study the mechanism of the active
faults. Iranian permanent GPS network
(IPGN) contains 120 settled GPS stations
spread all over Iran, and it provides a perfect
tool for analyzing ionospheric properties
over Iran. IPGN data contains pseudo range
(P;, P;) and phase (L;, L) data for
two different frequency bands transmitted
from GPS satellites (L; and L, bands). From
these 120 stations, 36 stations are selected
for three days of 2007 (2007.01.03,
2007.04.03 and 2007.07.13) for modeling
ionospheric electron density. In order to
better assess the validity of the proposed
model, two testing stations (TEHN
(3541° N, 51.20° E), BHR4 (26.12° N,
50.36" E)) from IGS tracking stations have
been selected. Testing stations have been
chosen so that proper assessment can be
made. The distributions of these receivers are
given in Figure 1. These stations are marked
with circles in Figure 1. As shown in Figure
1, one ionosonde station (Tehran (35.87° N,
51.64 E)) is located in the research area.
Thus, there is the possibility of a more
accurate evaluation for three models.

52"

e
56" 60° 64

Figure 1. The distribution of GPS, IGS and ionosonde stations in Iran (triangles show GPS stations, circles indicate IGS
tracking stations and green square is the ionosonde station).
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To perform calculations, spatial resolution is
selected 0.50x0.50x50 (Km) along the
longitude, latitude and altitude. Thus, the
total numbers of voxels are 23040. Besides,
half-hour GPS observation data is used to do
processing in all experiments. On the other
words, observation time interval selected
half-hour. Using data from space weather
prediction center, these days are calm and
geomagnetic indices are shown in Figure 2.

The performance of the proposed methods
(RMTNN, MRMTNN and ITNN) is
compared in terms of network structure,
number of iteration and time of convergence
to the optimal solution. Table 2 shows the
comparison. All processing and computing is
done on the same computer system
(MATLAB 8.5.0 using a 2.4 GHz PC
equipped with 8 GB of random access
memory run by windows 8.1). It should be
noted that after extensive testing, the 4-18-1
structure was selected as the optimum
structure for all three methods. In training
part of all three methods (RMTNN,
MRMTNN and ITNN), input space included
four observations used to train and obtain the
variations of the ionospheric electron density.
Therefore, the predicted N is a function of

9 Potsdam Kp-index
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four inputs and can be simply expressed
mathematically according to the following
expression:

Nsz(latitude longitude  altitude time)
(23)

Using the results presented in Table 2,
the difference between the methods becomes
apparent. The time of convergence to
the optimal solution and number of iteration
in ITNN method is less than the MRMTNN
and RMTNN methods. Time of convergence
to the optimal solution is considerably
reduced in ITNN method with respect
to RMTNN method (original method).
This result reflects the fact that using
WNN with PSO training algorithm (ITNN
method) computation speed is increased.
Table 3 shows the average RMSE and
bias values for ionosonde station in
four selected heights (200, 250, 300 and 350
Km) at three days (2007.01.03, 2007.04.03
and 2007.07.13). It should be noted that
RMSE is often used to verify the reliability
of the proposed method. Using this table, it is
possible to compare the results obtained from
each method.

9 Potsdam Kp-index
8 2007.04.03
7
5
a5
x4
3 l l
2 ) i
1 ]
! ]
é\rb*‘ & & & & & &

FT & &

Potsdam Kp-index
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B T T A

> 5 N
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Figure 2. Kp index for three days of 2007 (http://www.spaceweatherlive.com/en/archive/2007).
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Table 2. Comparison of the network structure, number of iteration and time for convergence in RMTNN, MRMTNN and

Journal of the Earth and Space Physics, Vol. 44, No. 4, Winter 2019

ITNN methods.
Reconstruction Network Structure L Time of
. . No. of iterations convergence
methods (input, hidden, output) (second)
RMTNN 4-18-1 1321 645
MRMTNN 4-18-1 1215 610
ITNN 4-18-1 1053 579

Table 3. Average RMSE and bias comparison in four selected heights (200, 250, 300 and 350 Km) at 2007.01.03,
2007.04.03 and 2007.07.13 over ionosonde station.

RMTNN MRMTNN ITNN
Days RMSE |  Bias RMSE | Bias RMSE | Bias
10" ele./m’ 10" ele./m’ 10" ele./m’

2007.01.03 0.54 0.51 0.51 0.47 0.44 0.40

2007.04.03 1.29 1.009 0.86 0.63 0.67 0.50

2007.07.13 1.26 1.05 0.42 0.38 0.27 0.25
The results in Table 3 demonstrate that the In order to better evaluate RMTNN,
RMSE and bias of ITNN method is less than MRMTNN and ITNN reconstruction

the other two methods. It means that by using
WNN with PSO training algorithm, accuracy
of the method is considerably increased. On
the other hand, in comparison with the
original method (RMTNN), the ITNN
method is improved electron density
reconstruction. It should be noted that even
MRMTNN method is also more accurate
than the RMTNN method. In the other
words, by varying the SANN to WNN,
results improved.

8/00
7/00
__ 6/00
3
@ 500
E
o 400
=
£ 8/00
-
2/00
1/00
0/00 =
TEHN BHR4
2007.01.03
sRMTNN = 4/50 5/30
“MRMTNN  3/16 4/00
#ITNN | 2115 3/22
IRI-2012  5/89 6/72

methods, VTEC values in three days and
two testing stations is computed. Then,
these values (reconstructed VTEC) compared
with the VTEC obtained from GPS
measurements (VTECgps) and IRI-2012
VTEC (VTECr12012). Equation (22) is used
for this purpose. This measure can provide a
means for the direct comparison of the
obtained results spatially and temporally.
Figure 3 shows the results of these
computations.

TEHN BHR4 TEHN BHR4
2007.04.03 2007.07.13
4/16 5/57 3/43 4/22
3/38 4/56 2/47 3/32
2/00 2/69 1/65 2/50
4/22 7122 3/75 5/55

Figure 3. Comparison of daily average of dVTEC (TECU) in three days for RMTNN, MRMTNN, ITNN and IRI-2012

methods over two testing stations (TEHN and BHR4).
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Using results in Figure 3, it can be seen
clearly that the results of the ITNN
(VTECtnn) method are much closer to the
results of the GPS observations (VTECgps).
In the other words, the numerical value of the
dVTEC in ITNN method is much less than
other methods. Another important point, it
can be investigated in Figure 3, is low
accuracy of the results of the IRI-2012
model. The IRI-2012 model used ionosonde
observations for modeling the ionosphere
variations. Due to the small number of these
stations in the world, the results of this model
are not accurate. For analyzing the accuracy
of the methods in ionospheric -electron
density reconstruction, results compare with
ionosonde direct measurements. Figure 4
indicates the scatter plot for RMTNN,
MRMTNN and ITNN electron density with
corresponding electron density from the
ionosonde in three days of 2007 with lines of
best fit showed for all cases.

Using Figure 4, it is clearly visible that the

107

ionosonde measurements with a correlation
coefficient (R) of 0.901. The values
of correlation coefficient between MRMTNN
and RMTNN with ionosonde measurements
are 0.860 and 0.826, respectively.
These results again indicate that the original
ionospheric reconstruction method
(RMTNN) is improved. After assessing
the accuracy of the proposed methods, it
is possible to draw profiles of time-dependent
ionosphere electron density. The results
of this analysis are shown in Figures 5, 6
and 7. In these figures, reconstructed electron
density profiles using RMTNN, MRMTNN
and ITNN were compared with ionosonde
profiles. All these comparisons have
been conducted for heights of 200, 250, 300
and 350 Km in three days of 2007
(2007.01.03, 2007.04.03 and 2007.07.13).
Using these figures, it is obvious that the
peak of electron density occurs in 08:00 to
10:00 UT, and also temporal variation of
ionospheric electron density can be seen

ITNN method is highly correlated to clearly.
10 . . . .
© RMTNN vs. lonosonde © |TNN vs. lonosonde o
o g |L——y=0.9656x-0.3338 (R = 0.826) || =——y=1.053x-0.363 (R = 0.901)
— ® 50
L (-]
8 6 eo o &0
o 4r
(%]
o [
c
S 2t
0 I L L N L L L L
0 2 4 6 8 100 2 4 6 8 10
RMTNN(10E11) ITNN(10E11)

© MRMTNN vs. lonosonde

| —y=0.9575x-0.1577 (R = 0.860)

6
MRMTNN(10E11)

8 10

Figure 4. Scatter plots for ionosonde electron density and corresponding reconstructed electron density values using
RMTNN (left panel), MRMTNN (middle panel) and ITNN (right panel) in three days of 2007.
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~lonosonde =AMTNN —MRMTNN —ITNN ' ~lonosonde +RMTNN ~MRMTNN —ITNN
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Figure 5. Comparison of ionosonde, RMTNN, MRMTNN and ITNN electron density variation in four selected altitudes
(200, 250, 300 and 350 Km) over ionosonde station at 2007.01.03.

According to the results of Figure 5, ITNN This fact can be seen in Figures 6 and 7.
electron density profiles are very close to Figure 6 shows the comparison for the
the ionosonde electron density profiles. 2007.04.03.
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Figure 6. Comparison of ionosonde, RMTNN, MRMTNN and ITNN electron density variation in four selected altitudes
(200, 250, 300 and 350 Km) over ionosonde station at 2007.04.03
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Figure 7 shows temporal wvariations of
ionospheric electron density in four selected
altitude (200, 250, 300 and 350). Again
(similar to Figures 4 and 5), the outputs of
ITNN method are closer to the results of
ionosonde compared with RMTNN and
MRMTNN.

The 3-dimensional images of the RMTNN,
MRMTNN and ITNN spatial distributions of
vertical electron density are shown in Figure
8. These figures are drawn at a fixed
longitude of 55° E for a vertical cross section.
All figures are drawn at 12:00 UT. The top
panel is for the 2007.01.03, middle panel is
for the 2007.04.03 and bottom panel is for
the 2007.07.13.

In Figure 8, the difference is obvious
between three ionospheric reconstruction
methods. Using Figure 8, vertical variations
of ionospheric electron density can be seen
clearly. Besides in all methods (RMTNN,
MRMTNN and ITNN), the maximum
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electron density occurred at an altitude
of 250:350 kilometers. Moreover,
daily variation in the height of maximum
electron density is remarkable in these
results. This corresponds to the expected
diurnal variations of electron density.
These characteristics that are the constituents
of the ionosphere morphology in three
dimensions are also reported elsewhere
(Yizengaw et al., 2007) and confirmed by the
analysis of the direct measurement
techniques.

Figures 9, 10 and 11 illustrate the horizontal
variations of VTEC over the study area in
three days of 2007.01.03, 2007.04.03 and
2007.07.13 suggested by the ITNN method
(in 10" ele./m?). All figures drawn at four
time interval: two times in day-side and two
times in night-side. The main purpose of
drawing these maps is indicating the
horizontal variations in ionosphere electron
content.
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Figure 7. Comparison of ionosonde, RMTNN, MRMTNN and ITNN electron density variation in four selected altitudes
(200, 250, 300 and 350 Km) over ionosonde station at 2007.07.13.
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Figure 8. Ionospheric electron density distribution at longitude 55° E in10'! ele./m® using RMTNN, MRMTNN and
ITNN methods in 2007.01.03 (top panel), 2007.04.03 (middle panel) and 207.07.13 (bottom panel).
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0 3 6 9 12 15 18 21 24 27 30 33
Figure 10. The model estimates of VTEC (10'° ele./m?) at four times in 2007.04.03.
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Figure 11. The model estimates of VTEC (10'° ele./m?) at four times in 2007.07.13.

In Figures 9, 10 and 11 that are displayed for
different times (two times in day-side and
two times in night-side), it is clearly visible
that the maximum electron density occurs
during the day-side.

6. Discussion and conclusion

In this paper, voxel based ionospheric
tomography was solved using artificial neural
networks (ANNs). Three methods of
ionospheric reconstruction were compared
and evaluated. Residual minimization
training neural network (RMTNN), modified
RMTNN and ionospheric tomography based
on the neural network (ITNN) were studied
in this paper. In RMTNN method, standard
ANN (SANN) with back-propagation (BP)
training algorithm was used to reconstruct the
ionosphere. Wavelet neural network (WNN)
was used as base network in MRMTNN
method. Besides, BP algorithm was used to
train the network. In ITNN method, instead
of BP algorithm and speed up of the
convergence of the optimal solution, particle
swarm optimization (PSO) algorithm was
used. All three methods were evaluated using
GPS and IGS data in Iran. The ionosonde

data in Tehran (¢p=35.73820, A=51.38510)
was used for validating the reliability of the
proposed methods. Network structure,
number of iteration and time of convergence
to the optimal solution were compared in
proposed methods. The time of convergence
to the optimal solution and number of
iteration in ITNN method was less than those
of the MRMTNN and ITNN methods.

The RMSE and bias of ITNN method were
less than the other two methods. It meant that
by using WNN with PSO training algorithm,
accuracy of the method was considerably
increased. Moreover, the scatter plot for
ionosonde electron density with
corresponding electron density predictions
from the three methods was computed. In this
case, ionosonde electron density was highly
correlated to ITNN with a correlation
coefficient (R) of 0.9018 and lowest
correlated with a correlation coefficient of
0.8264 in RMTNN. This study showed the
superiority of the ITNN method over the
other methods (RMTNN and MRMTNN). As
a future research, this method is applicable
for the reconstruction of the troposphere
properties.
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