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Abstract 
In 98 km SW of Tres Picos in Mexico (15.022 N, 93.899 W, 47.40 km depth) a powerful 
earthquake of Mw=8.2 took place at 04:49:19 UTC (LT=UTC-05:00) on September 8, 2017. In this 
study, using three standard, classical and intelligent methods including median, Kalman filter, and 
Neural Network, respectively, the GPS Total Electron Content (TEC) measurements of three 
months were surveyed to detect the potential unusual variations around the time and location of 
Mexico earthquake. Every three implemented methods indicated a striking irregular variation of 
TEC at the earthquake time. However, on the earthquake day, the geomagnetic indices Dst and Ap 
have exceeded the allowed ranges and even reached maximum values during the studied time 
period. Besides, the solar index of F10.7 showed high activity around the earthquake day. 
Therefore, it is difficult to acknowledge the seismicity nature of the detected TEC unusual 
variations on earthquake day. Therefore, in this case, we encounter a mixed and complex behavior 
of ionosphere.  
 

Keywords: Earthquake Precursor, Ionosphere, Geomagnetic activity, GPS, Mexico earthquake, 
TEC.  

 

1. Introduction 
The preseismic unusual variations in 
lithosphere, atmosphere, and ionosphere 
without significant man-made, seasonal, solar 
and geomagnetic disturbances may be 
considered as earthquake precursors (Pulinets 
and Boyarchuk, 2004). It should be noted 
that statistical analysis and evaluation of 
different earthquake precursors in different 
case studies are necessary for development of 
precursor’s studies. The ionospheric irregular 
variations can be observed in the D, E and F 
layers, 1 to 10 days before the earthquakes 
and continue a few days after them. 
Fortunately, there are many scientific reports 
on satellite surveying of the ionospheric 
plasma and measuring its parameters 
including electron and ion density and 
temperature, electric potential and 
electromagnetic fields in different frequency 
channels associated with seismic activities 
(Parrot, 1995; Liu et al., 2004; Hayakawa and 
Molchanov, 2002; Pulinets and Boyarchuk, 
2004; Akhoondzadeh, 2011).  
Contrary to methods that suppose the  
Earth’s crust to have an ideal homogeneous 
structure and disregard the physical and 
chemical changes occurring inside the earth, 
there exist hypotheses explaining the 

seismoelectromagnetic mechanism based on 
geophysical and geochemical processes: 
- Direct wave production in a wide band 
spectrum by compression of rocks close to 
earthquake epicenter could be likely related 
to piezo-electric and tribo-electric effects 
(Pulinets and Boyarchuk, 2004);  
- Rising fluids under the ground would lead 
to the emanation of warm gases (Pulinets, 
2009);  
- Activation of positive holes that can reach 
the ground surface (Freund, 2009);  
- Emissions of radioactive gas or metallic 
ions such as radon that increase the Earth 
surface potential (Pulinets, 2009).  
Pre-seismic electric field and its polarity 
cause the electrons in the F-layer to penetrate 
to lower layers and therefore to create an 
anomaly in the ionospheric parameters 
(Pulinets, 2009). The presence of ions and 
charge separation lead to the generation of 
the strong electric field, which penetrates into 
the ionosphere and creates seismo-
ionospheric effects. The vertical electric field 
on the ground surface is transformed into an 
electric field perpendicular to the 
geomagnetic field lines. This zonal 
component leads to plasma density anomalies, 
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which are observed in the earthquake area. 
(Parrot, 1995; Hayakawa and Molchanov, 
2002; Pulinets and Ouzounov, 2011; Sorokin 
and Pokhotelov, 2014). In the vicinity of the 
equatorial anomaly, a zonal component can 
be generated using the mechanism proposed 
in Pulinets (2009). 
Nowadays, GPS Total Electron Content 
(TEC) measurements are very effective tools 
to survey the ionosphere over the regions 
supported by the GPS receivers. Liu et al. 
(2004) statistically described the temporal 
parameters of the seismo-ionospheric 
precursors detected during 1-5 days prior to 
the earthquakes using TEC data for 20 major 
earthquakes in Taiwan. Klimenko et al. 
(2012) applied numerical calculations to 
check the proposed mechanism of the pre-
seismic TEC anomalies formation under the 
influence of additional zonal electric field. 
Namgaladze et al. (2013) presented the 
results of a study of the abnormal variations 
in the TEC of the ionosphere observed before 
the earthquake of January 12, 2010, in Haiti. 
They showed the prevalence of increased 
TEC values (positive disturbances), 
neighboring negative disturbances of lower 
magnitudes, localization, magnetic conjugacy 
of high-intensity effects in the Southern 
Hemisphere, and disappearance of 
disturbances around midday. This paper is 
dedicated to evaluating the effectiveness of 
GPS-TEC measurements to detect the 
ionospheric irregular variations around the 
time of the powerful Mexico earthquake. 
 
2. The implemented methods 
There are many classical and intelligent 
methods to detect the unusual variations in a 
nonlinear time series (Akhoondazdeh, 2012; 
2013). In this study, in addition to the median 
method, other methods including Kalman 
filter and Neural Network (NN) as classical 
and intelligent methods, respectively, are 
implemented to detect the irregular variations.  
 
2.1. Median 
Daily variations of the ionosphere depend on 
season, geographic location, thermospheric 
winds, traveling ionospheric disturbances and 
other unknown parameters. The unknown 
variations preclude using methods based on 
the normal distribution of data. As the 
fluctuation of the ionospheric parameters 

does not often follow a Gaussian probability 
function, some researchers (Liu et al., 2004; 
Pulinets and Boyarchuk, 2004) used the 
median value and the interquartile range of 
data to specify higher and lower bounds in 
order to distinguish seismic anomalies from 
the background variations. The interquartile 
range (IQR) is a measure of variability, based 
on dividing a data set into quartiles. Quartiles 
divide a rank-ordered data set into four equal 
parts. The values that divide each part are 
called the first, the second, and the third 
quartiles; and they are denoted by Q1, Q2, 
and Q3, respectively. 
- Q1 is the "middle" value in the first half of 
the rank-ordered data set. 
- Q2 is the median value in the set. 
- Q3 is the "middle" value in the second half 
of the rank-ordered data set. 
The interquartile range is equal to Q3 minus 
Q1. 
 The higher and lower bounds of the 
mentioned range can be calculated using the 
following equations: 
 

IQRkMxhigh                                  (1) 

IQRkMxlow                                  (2) 
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where x , highx , lowx , M , IQR  and Dx  are 

parameter (Here, TEC), higher bound, lower 
bound, median value, interquartile range and 
differential of x, respectively. For a given x, 
values of M and IQR  have been calculated 
for the whole period of interest for any 
interval of 1 hour. According to Equation (3), 

  kkDxp /100   indicates the 

percentage of parameter change from the 
undisturbed state. If an observed TEC falls 
out of either the associated lower or higher 
bound, it is concluded with a confidence 
level of about 80-85% that a lower or higher 
irregular value is detected (Liu et al., 2004).  
 

2-2. Kalman filter  
Kalman filter is a recursive solution to 
optimize the described systems in the state 
space. This filter is a set of mathematical 
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equations to optimize prediction equations 
using an estimation of state variables and 
minimization of error covariance. It is 
suitable for the stationary as well as dynamic 
and linear processes, and it can be applied to 
non-linear systems using Taylor expansion 
equations. The filter has high capabilities in 
the determination of inner variables and 
simultaneously solves the state and 
measurement equations in order to reach 
optimized unobservable states. In other 
words, this method uses observed variables 
( tyyy ,...,, 21 ) to estimate state ( ix ) with 

minimum error. If i=t, i>t or i<t, this method 
is known as filtering, prediction or 
interpolation respectively. Equations (4) and 
(5) are state and measurement equations 
(Haykin, 2001): 

ttt wFxx 1                                        (4) 

ttt vHxy                                            (5) 

where tw  and tv  are white noise vectors 

(P(w): N(0,Q) and P(v): N(0,R)). P and N are 
probability distribution function and normal 
distribution function respectively. Q and R 
are standard deviation parameters. F is the 
transition matrix taking the state tx  from 

time t to time t+1. H is the measurement 
matrix. If tx  is supposed to be a real state at 

time t, then pre-estimation error 

(

  ttt xxe ), post-estimation error 

(

  ttt xxe ), pre-error covariance 

( )( '  ttt eeEp ) and post-error covariance 

( )( '  ttt eeEp ) can be defined. 

The main aim in the Kalman filter is an 

estimation of 


tx (post-estimation of state) 

using linear integration of 


tx (pre-estimation 

of state) and measured error (

 tt xHy ) as 

Equation (6). 
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tk is the Kalman coefficient and must be 

defined based on the minimum of post-error 
covariance (Equation 7). 

1)(   RHHpHpk T
k

T
kt                       (7) 

Regarding the mentioned equations, 
measurements would be reliable when 
covariance of measurement error is close to 
zero. Kalman filter equations are classified 
into two categories: 1) time update; time 
retrieval equations update state and 
covariance matrices based on the pre-
measurements (Equations 8 and 9), 2) 
measurement update; measurement retrieval 
equations  for feedback of time update effects 
in the system and reach to optimum state 
based on the measurements (Equations 10, 11 
and 12).  
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Therefore, in the beginning, the prediction 
process is done, then it is corrected based on 
the observations and again prediction process 
is repeated. If however, the state and 
measurement equations are nonlinear (such 
as time series of earthquake precursors), they 
could be changed into linear equations using 
Taylor expansion called extended Kalman 
filter. This is one of the striking 
characteristics of Kalman filter. In order to 
detect irregular variation using Kalman filter, 
total available data are split into a training set 
and a test set. This method uses the observed 
variables ( tyyy ,...,, 21 ) to estimate state ( ix ) 

with minimum error. At the beginning, 
prediction process is done, then after  
the improvement of the Kalman filter 
parameters, it is corrected based on the 
observations and again prediction process  
is repeated. If the difference between  
the observed TEC value and the predicted 
TEC value is greater than a threshold value 
(i.e.  ;   and   are the mean and the 
standard deviation parameters, respectively), 
the observed TEC value in quiet geomagnetic 
(i.e.  nt 20- Dst ,  nt 20Dst , 

20  Ap  and F10.7 <120) is regarded as 
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irregular variation (Akhoondazdeh, 2011). 
 
2-3. Neural Networks 
Artificial Neural Networks are a class of 
intelligent systems that can discover patterns 
with a few prior assumptions and learn any 
complex functional relationship from the data, 
to model a phenomenon. Neural networks are 
able to capture the autocorrelation structure 
in a time series even if the underlying law 
governing the series is unknown or too 
complex to describe.  
In a notable number of scientific works, 
artificial neural networks have been proposed 
as a promising alternative approach to time 
series forecasting. A large number of 
successful applications have shown that 
neural networks can be a very effective tool 
in modeling and forecasting of nonlinear time 
series (Zhang, 2001). 
An NN is made up of simple processing units, 
the neurons, which are connected in a 
network by a large number of weighted links 
where the acquired knowledge is stored. 
An input xj is transmitted through a 
connection, which multiplies its strength by a 
weight wij to give a product xjwij. This 
product is an argument to a transfer function f, 
which yields an output represented as yi = 
f(xjwij) where i is an index of neurons in the 
hidden layer and j is an index of an input to 
the neural network (Paoli et al., 2010). 
The most popular and successful model is the 
feed forward Multi-Layer Perceptron (MLP) 
network. In an MLP, neurons are grouped in 
layers and only forward connections exist.  
In order to detect irregular variation, total 
available data are split into a training set and 
a test set. The training set is used for the 
construction of the neural network, whereas 
the test set is used for measuring the 
predictive error of the model. The training 
process is used essentially to find the 
connection weights of the networks (Pao, 
2007). If the prediction error exceeds the pre-
defined threshold, the measured value could 
be considered as an irregular variation. 
In order to determine the best network 
configuration, the effective parameters, 
which influence the value of predictive error, 
including the number of pattern input; lag 
value: the number of hidden layer and their 
number of neurons; the activation functions 
and the learning algorithm have been 

obtained via an iterative process to assess the 
minimum predictive error when the training 
process was implemented.   
Concerning the activation function for the 
output layer, the best results were obtained 
with the linear function. The transfer function 
used for all hidden nodes is the tan-sigmoid 
function. The tan-sigmoid function is: 

1
1

2
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2



  ze

xf                                   (13) 

The well-known Levenberg–Marquardt 
optimization has been selected as training 
algorithm. To start the prediction process, N 
observations y1, y2, . . ., yN are selected as the 
training set and the remaining ones yN+1, 
yN+2, . . . , yN+m are considered as the test set. 
The number of input nodes p corresponds to 
the number of lagged observations used to 
discover the underlying pattern in a time 
series. Different input nodes can affect either 
the learning or predictive capability of the 
network (Pao, 2007). In this study, a network 
with three nodes in the input layer, two nodes 
in the hidden layer and one node in the 
output layer has been proposed. In other 
words, every four observations in the training 
set constitute a pattern vector, three of which 
are input values and the last one is the output 
value.  
The training patterns in the proposed network 
are: 
 

X4=f(X1, X2, X3) 
X5=f(X2, X3, X4) 
. 
. 
XN=f(XN-3, XN-2, XN-1) 
 

The training process is executed to find the 
optimized connection weights such that the 
prediction error (PE) is minimized. PE 
equation can be written as:  





N

i
ii XXPE

4

)ˆ(                                  (14) 

where, iX̂  is the output of the network.  

The testing patterns are, 
 

XN+4=f(XN+1, XN+2, XN+3) 
XN+5=f(XN+2, XN+3, XN+4) 
. 
. 
XN+m=f(XN+m-3, XN+m-2, XN+m-1) 
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For detection of irregular variations using the 
NN method, total available data are split into 
a training set and a test set. The training set is 
used to determine the weight and bias 
parameters of NN, whereas the test set is 
used for measuring the model prediction 
error. If the prediction error (difference value 
between the actual value and the predicted 
value), exceeds the limited bounds   , 

(   and   are the mean and the standard 
deviation) the irregular variation is detected 
(Akhoondazdeh, 2013). 
 
3. The used data  

3-1. GPS-TEC Data 
Recently, the extending network of GPS 
receivers has generated an increasing amount 
of data regarding the ionosphere state. TEC is 
the integrated number of the electrons within 
the block between the satellite and receiver 
or between two satellites. The GPS satellites 
transmit two frequencies of signals 
(f1=1575.42 MHz and f2=1227.60 MHz). The 
received signals in ground stations contain 
many effects such as ionospheric, 
tropospheric, hardware and random errors. 
The ionosphere is a dispersive medium and 
its effects can be evaluated with 
measurement of the modulations on the 
carrier phases recorded by dual-frequency 
receivers. To study TEC variations, data of 
Global Ionospheric Map (GIM) provided by 
NASA Jet Propulsion Laboratory (JPL) were 
used. The GIM is constructed into 5° × 2.5° 
(Longitude, Latitude) grid with a time 
resolution of 1 hour. GIM data are generated 
on a daily basis using data from about 150 
GPS sites of the International GNSS Service 
(IGS) and other institutions. Instrumental 
biases, so-called differential P1-P2 code 
biases (DCB), for all GPS satellites and 
ground stations are estimated as constant 
values for each day (Mannucci et al., 1998). 
To convert line-of-sight TEC into vertical 
TEC, a modified single-layer model mapping 
function approximating the JPL extended 
block model mapping function is adopted.   
 
3-2. Space Weather (SW) and solar 
geomagnetic data 

The ionospheric parameters are affected by 
SW phenomena including solar flares and 
CME, geomagnetic storms, especially in the 

equatorial and polar regions. Besides, auroral 
activity has an important role in the mid-
latitude ionosphere perturbations. In other 
words, the ionosphere current and equatorial 
storm-time ring current in periods of solar-
terrestrial interactions produce significant 
geomagnetic field disturbances observed on 
the ground. Accordingly, the measured 
ionospheric plasma parameters may display 
variations during and in absence of seismic 
activity. Therefore, it is difficult to separate 
pre-seismic ionospheric phenomena from the 
ionospheric disturbances due to the solar-
terrestrial activities. Consequently, to 
distinguish the seismo-ionospheric 
perturbations from solar geomagnetic 
disturbances, the indices of Dst, Ap and F10.7 
were checked. The detected irregular 
variations of TEC in quiet solar geomagnetic 
conditions may be associated with seismic 
activities. The Ap index monitors the 
planetary activity on a worldwide scale while 
the Dst index records the equatorial ring 
current variations (Mayaud, 1980). The F10.7 
index represents a measure of diffuse, 
nonradiative heating of the coronal plasma 
trapped by magnetic fields over active 
regions, and is an excellent indicator of 
overall solar activity levels. The ionospheric 
effect caused by geomagnetic storm has a 
global impact being observed all over the 
world while the seismogenic effect is 
observed only by stations with distance less 
than 2000 km from the potential epicenter.  
Figure 1 illustrates the variations of Dst, Ap 
and F10.7 indices, during the period of July 1 
to September 30, 2017. An asterisk indicates 
the earthquake time. The X-axis represents 
the days relative to the earthquake day. The 
Y-axis represents the universal time 
coordinate.  
The irregular Dst values are observed on 
earthquake day when this parameter exceeds 
the lower boundary value (i.e. -20 nT), 
reaching the lowest value of -142 and -128 
nT at 02:00 and 03:00 UTC, respectively. 
Similar unusual variations are also seen at 
other times of earthquake date with the value 
of about -120 nT. The high geomagnetic 
activities are clearly observed on September 
8, 2017, when the Ap value reach the 
maximum value of 236, between 13:00 and 
14:00 UTC. The unusual variations of the Ap 
indices are also seen on earthquake day 
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between 02:00 and 03:00 UTC with the value 
of 207. This index shows the high 
geomagnetic activities on earthquake date. 
The F10.7 value gradually increases from 
about 14 days before the earthquake and 
reaches the maximum value of 182.50 SFU 
on September 4, 2017 (4 days before the 
event). 
 
4. Case study 
In 98 km SW of Tres Picos in Mexico 
(15.022 N, 93.899 W, 47.40 km depth) a 
strong earthquake of Mw=8.2 took place at 
04:49:19 UTC (LT=UTC-05:00) on 
September 8, 2017 
(https://earthquake.usgs.gov/). It was the 
second strongest earthquake recorded in the 
country's history, behind the magnitude 8.6 
earthquake in 1787.    
Figure 2(a) shows TEC variations derived 
from GIM data and the closest node (15 N, 
95 W) to the epicenter during the period of 
July 1 to September 30, 2017. By visual 
inspection and without performing any 
special analysis, unusual TEC values are  
 

clearly seen around the earthquake day, 
especially between five days before the event 
to earthquake day. The TEC value reaches to 
a maximum value of 52.8 (TECU) on 
September 3, 2017 (five days before the 
earthquake) at 21:00 UTC. However, this 
sharp irregular variation cannot be 
considered as a seismo-ionospheric irregular 
variation because the geomagnetic activities 
are more than the allowed ranges at this time. 
After implementing the median method, Dx 
that will be called DTEC here is calculated 
using Equation (3).  
Figure 2(b) shows variations of DTEC. The 
irregular variations are clearly seen between 
02:00 and 06:00 UTC on earthquake day. 
DTEC reaches to a maximum value of 8.97 
at 05:00 UTC that is the earthquake time. 
Figure 3 shows the time-series of variations 
of TEC, Dst, Ap, and F10.7 during the period 
of July 1 to September 30, 2017 at 05:00 
UTC. It is seen that the mentioned 
parameters exceed the allowed boundaries 
(quiet geomagnetic conditions) on earthquake 
day at 05:00 UTC. 

 
                 (a)                                                                                  (b)                                       

 

 
(c) 

 

Figure 1. (a), (b) and (c) show, respectively, the variations of Dst, Ap, and solar radio flux (F10.7) indices during the 
period of July 1 to September 30, 2017. An asterisk indicates the earthquake time. The X-axis represents the 
days relative to the Mexico earthquake day.  
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                   (a)                                                                             (b)                                       

 

 
(c) 

 

Figure 2. a) The variations of TEC, b) DTEC variations after implementing the median method and c) detected TEC 
anomalies using the median method when 5.1DTEC . 

 

 
 

Figure 3. The time-series of variations of TEC, Dst, ap and F10.7 during the period of July 01 to September 30, 2017 at 
05:00 UTC.  

 
Figure 2(c) shows detected TEC anomalies 
using the median method when 5.1DTEC  

and without considering the non-quiet 
conditions of solar and geomagnetic 
activities. Liu et al. (2004) declared that if an 
observed TEC value falls out of either the 
associated lower or higher bound (M±IQR), it 

can be concluded with a confidence level of 
about 80-85% that a lower or higher 
abnormal signal is detected. Therefore, based 
on the error ellipsoid theory, M±1.5×IQR 
bounds, increase the confidence level to 
about 90-95%. 
There are a clump of clear anomalies around 
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the time of the earthquake. Then to 
distinguish pre-earthquake anomalies from 
the other anomalies related to the 
geomagnetic activities, the five conditions of 
|DTEC| > 1.5, Dst > -20 nt, Dst < 20 nt, Ap < 
20 and F10.7 < 120, respectively, are jointly 
used using AND operator to construct the 
irregular variations map. It is seen that the all 
detected pre seismic anomalies in Figure 2(c) 
are masked by high geomagnetic activities. 
The detected anomalies on 25 and 26 
September (17 and 18 days after the 
earthquake) could be associated with the after 
seismic events on 19 and 23 September 
(Table 1). 
In order to implement the Kalman filter 
method, the half of the data has been used for 
training to obtain the optimum parameters. 
Figure 4(a) shows the differences between 
the predicted TEC values using the Kalman 
filter method and the observed TEC values 
during the 23 days before to 22 days after the 
earthquake. It is seen that these differences 
have reached the high values on five days 

before the earthquake. Figure 4(b) shows the 

DTEC values obtained from 




x

Dx , 

where   and   are the mean value and 

standard deviation of the differences values 
between the observed and the predicted 
values using a Kalman filter (x) at each hour, 
respectively. According to this, if the 
absolute value of Dx would be greater than k, 
( kDx  ), the behavior of the relevant 

parameter (x) is regarded as anomalous. 
Figure 4(b) illustrates striking anomalies 
between 2:00 and 5:00 UTC on earthquake 
day. Figure 4(c) shows detected TEC 
anomalies using the median method when 
|DTEC| > 1 and without the non-quiet 
conditions of solar and geomagnetic 
activities. 
The unusual increase of TEC values clearly 
seen between 02:00 and 06:00 UTC, on 
earthquake day. It should be noted that the all 
detected pre seismic anomalies in Figure 4(c) 
are masked by high geomagnetic activities.  

 
Table 1. Characteristics of the Mexico earthquake and its main aftershocks (reported by http://earthquake.usgs.gov/).  
 

Date Time (UTC) 
Geographic 

Latitude, longitude 
Magnitude 

(MW) 
Focal depth 

(km) 
September 08, 2017 04:49:19 15.022 N, 93.899 W 8.2 47.40 
September 19, 2017 18:14:38 18.568 N, 98.481 W 7.1 51.0 
September 23, 2017 12:53:02 16.773 N, 94.951 W 6.1 9.6   

 

      
                   (a)                                                                                    (b)                                                 

 

 
(c) 

Figure 4. a) Differences between the observed and the predicted values of TEC obtained using the Kalman filter method. 
b) DTEC variations. c) Detected anomalies using a Kalman filter method without considering the non-quiet 
conditions of solar and geomagnetic activities. 
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To implement the NN method, half of  
the data were selected as training data. Using 
the training data, the network parameters  
are determined and then based on  
the constructed pattern vectors in feature 
space the prediction process is done. In  
the case of a testing process, if the difference 
value PEI between the observed value Xi  

and the predicted value iX̂ , is outside the 

pre-defined bounds   0.2 , (   and   

are the mean and the standard deviation  
of PEi values) the irregular variation is 
detected. 
Figure 5(a) is a representation of the 
differences in values between the observed 
and the predicted values during the testing set. 
Sharp anomalies are seen on earthquake day. 
Figure 5(b) shows the DTEC values obtained 

from 




x

Dx , where  ,   are the 

mean and standard deviation of differences in 
values (x) at each hour, respectively. In 
Figure 5(c), anomalous TEC values are only 
depicted at times when |DTEC| > 1. Then, to  
 

distinguish pre-earthquake anomalies from 
the other anomalies related to the 
geomagnetic activities, the five conditions of 
|DTEC| > 1, Dst > -20 nt, Dst < 20 nt, Ap < 
20 and F10.7 <120, are jointly used using 
AND operator to construct the irregular 
variation map. However, the all detected pre 
seismic anomalies in Figure 5(c) are masked 
by high geomagnetic activities. 
 
5-5. Discussion and Conclusions 
So far, different hypotheses about  
the behavior of earthquake precursors have 
been raised based on geophysical and 
geochemical processes. However, none of 
them have been accepted (Qiang et al., 1991; 
Freund, 2009; Pulinets and Ouzounov, 2011). 
One way to justify the behavior of 
earthquake precursors can be multi-
precursors analysis that attempts to detect 
anomalous variations in different layers of 
lithosphere, atmosphere and ionosphere and 
justify their relationship with each other 
(Akhoondzadeh, 2011; Akhoondzadeh et al., 
2018). 

   
                   (a)                                                                             (b)                                          

 

 
(c) 

 

Figure 5. a) Differences between the observed and the predicted values of TEC obtained using the NN method. b) DTEC 
variations. c) Detected anomalies using the NN method without considering the geomagnetic indices.  
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In this study, three standard, classical and 
intelligent algorithms including median, 
Kalman filter, and NN, respectively were 
implemented for detection of irregular 
variations around the time of the Mexico 
(Mw=8.2) earthquake of September 08, 2017. 
Every three methods detect very striking 
irregular variations on earthquake day. 
However, solar- geomagnetic parameters 
indicate higher activities on earthquake day. 
Therefore, there is ambiguity about the 
association of these TEC irregular variations 
with seismic activity as a mixed and complex 
behavior of the ionosphere is encountered. It 
is necessary to take into account that the 
ionosphere has a complicated behavior even 
under the quiet geomagnetic condition and 
the measured parameters sometimes display 
variations in a quiet seismic condition that 
can be associated with other unknown factors. 
The existence of a dense distribution of GPS 
stations in most parts of the world and the 
continuous monitoring of TEC may help to 
create an effective earthquake warning 
system. One of the most important 
advantages of using learning methods such as 
NN is that the prediction process is improved 
according to the size of the training data. Of 
course, it should be noted that the impacts of 
other factors such as solar-geomagnetic 
activities at least about ionospheric 
precursors, should be considered. 
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