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Abstract 
Spatial aliasing is an unwanted side effect that produces artifacts during seismic data processing, 
imaging and interpolation. It is often caused by insufficient spatial sampling of seismic data and 
often happens in CMP (Common Mid-Point) gather. To tackle this artifact, several techniques 
have been developed in time-space domain as well as frequency domain such as frequency-
wavenumber, frequency-space, and frequency-time. The main advantages of seismic interpolation 
in time-space domain over frequency domain are: a) frequency components of the initial signals 
are preserved, and b) the prior knowledge that a seismic event consists of many plane wave 
segments, can be used. Using the later advantage, a seismic event can be predicted by pursuing the 
continuity of seismic events in a trace-by-trace manner. This process, which has become popular in 
seismic data reconstruction and imaging within the past few years, is known as predictive painting. 
We use predictive painting to predict the wavefronts and two-way-travel time curves in regularly 
sampled CMP gathers followed by increasing the number of traces by cubic interpolation. Then, 
the amplitude of the interpolated trace is obtained by averaging the amplitudes of the neighbouring 
traces. Performance of the proposed method is demonstrated on several synthetic seismic data 
examples as well as a field data set.  
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1. Introduction 
In exploration seismology, recorded seismic 
wavefront is the discretised version of the 
source generated continuous wavefront, 
where the spatial sampling is provided by the 
acquisition geometry. According to sampling 
theorem (Shannon, 1948) spatial aliasing 
occurs in regularly sampled data, when some 
of the constituent wavenumbers fall beyond 
the Nyquist wavenumber. These 
wavenumber components are folded back 
and appear lower than the Nyquist 
wavenumber. It leads to the contamination of 
unaliased part of the data with aliased one. 
Different factors may contribute to spatial 
aliasing such as large offsets, high frequency 
components, shallow reflectors, steeply 
dipping reflectors and low interval velocities 
(Claerbout, 1985; Yilmaz, 2001). Spatial 
aliasing widely affects seismic imaging by 
causing poor lateral resolution in final 
subsurface images (Spitz, 1991). A costly 
solution for spatial aliasing is to decrease 
sampling interval along spatial direction by 
increasing the receiver group interval during 
seismic acquisition; however, this solution 

might not be able to deal with under-sampled 
coherent artifacts (multiples), particularly in 
the areas where the artifacts have a much 
lower velocity than the primary energy 
(Gülünay, 2003).  
A cost-effective alternative is the attenuation 
of spatial aliasing using signal 
processing/interpolation methods (Porsani, 
1999; Zwartjes and Sacchi, 2007). According 
to Naghizadeh and Sacchi (2010), seismic 
data reconstruction/interpolation methods can 
be divided into two categories: wave-
equation-based and signal-processing-based 
methods. The wave-equation-based methods 
use the physical concepts of the wave 
propagation and wavefront extrapolation. 
Such techniques require some prior 
knowledge of seismic velocities. Techniques 
developed by Ronen (1987), Stolt (2002), 
Fomel (2003), and Leggott et al. (2007) are 
classified under the wave-equation-based 
interpolation category. On the other hand, 
signal-processing techniques for 
interpolation/reconstruction of seismic data 
rely often on transformation of the data into 
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other domains. Such techniques include 
Radon transform (Lu, 1985; Turner, 1990; 
Trad et al., 2002; Sacchi et al., 2004; Yu et 
al., 2007; Wang et al., 2009; Ibrahim et al., 
2015), curvelet transform (Herrmann and 
Hennenfent, 2008; Naghizadeh and Sacchi, 
2010), wavelet-like/seislet transform (Liu 
and Fomel, 2010; Gan et al., 2015 and 2016), 
and shaping regularization techniques (Chen 
et al., 2015) relying on shaping/constraining 
operators in different transformation domains 
such as the sparsity-promoting and the 
Fourier transform. Another type of signal-
processing-based interpolation method is 
established upon prediction error filtering 
(PEF) methods. These methods include PEF 
interpolation in frequency-space (f-x) domain 
(Spitz, 1991; Porsani, 1999; Trickett, 2003; 
Naghizadeh and Sacchi, 2007) and in 
frequency-wavenumber (f-k) domain 
(Gülünay, 2003).  
Signal-processing-based interpolation 
techniques that rely on transformation of 
seismic data into other domains may face 
some problems. First, seismic transforms are 
not always reversible (e.g., Radon 
transform). In other words, direct and reverse 
transformation of the data (without any 
additional process) may result in the loss  
of some useful information. Second, 
frequency components of the original data 
may not be preserved. These potential 
limitations make the seismic interpolation 
techniques in t-x domain (Claerbout, 1992; 
Crawley, 2000; Fomel, 2002; Liu and Fomel, 
2011) worthy of consideration and 
development. Local slope-based imaging, 
interpolation, and interpretation techniques, 
which are performed in t-x domain, are 
typically time-efficient and amplitude 
preservative (Fomel, 2007; Khoshnavaz et 
al., 2016a). This research aims to introduce a 
local slope-based nonlinear interpolation 
method using a numerical tool called 
“predictive painting”. 
Predictive painting, introduced by Fomel 
(2010), is a powerful prediction method in t-x 
domain, which is based on the prediction of 
each seismic event from its neighbouring 
traces that are shifted along local slopes. Its 
applications include seismic imaging 
(Khoshnavaz et al., 2016a; Khoshnavaz, 
2017), seismic anisotropy (Burnett and 
Fomel, 2009; Casasanta and Fomel, 2011; 

Khoshnavaz et al., 2016b), and seismic 
interpretation (Karimi, 2015; Karimi et al., 
2015). In this research, the predictive 
painting is employed to attenuate spatial 
aliasing in regularly sampled seismic data in 
CMP gather followed by increasing the 
number of samples using cubic interpolation. 
Then, the amplitudes of the neighbouring 
traces were averaged to build the new 
interpolated traces. The efficiency of the 
proposed approach is demonstrated on 
several synthetic seismic data examples as 
well as a field dataset. 
 
2. Methodology 
For the estimation of two-way-travel time 
(TWT) curves in the CMP domain, the 
predictive painting technique introduced by 
Fomel (2010) was used. The main idea 
behind the predictive painting is the 
prediction of each seismic event from its 
neighbouring traces that are shifted along the 
local slopes. Local slopes are estimated by 
computing the time-shift between two points 
of the same seismic wavefront. Given the 
local slopes, implementation of an inverse 
procedure gives the time-shift between the 
two neighbouring traces. The prediction 
procedure can be expressed by plane wave 
destruction (Claerbout, 1992; Fomel, 2002; 
Fomel et al., 2013). Plane wave destruction 
operation in the linear operator notation is 
expressed by Fomel (2010) as: ࢘ =  (1)                                                 ,࢙ሻߪሺࡰ

where, σ is local slope, s denotes a window 
consisting of N traces ሺሾݏଵݏଶ …  ேሿ்ሻ, r is theݏ
prediction error, and D is the destruction 
operator, defined as: ࡰ =
ێێۏ
ۍێ ሻ0⋯0ߪଵ,ଶሺࡼ−ࡵ 				 ଶ,ଷ⋯0ࡼ−ࡵ0 ሺߪሻ					 						⋯⋯ࡵ00

				ሻߪேିଵ,ேሺࡼ−⋯⋯⋯⋯
ࡵ⋯000 ۑۑے
                         .ېۑ
(2) 

 

Herein, I denotes the identity operator and ࡼ௜,௝ሺߪ௜ሻ denotes a prediction operator that 
predicts trace j from trace i. The prediction of 
trace sk from a reference trace sr can be 
defined by	ࡼ௥,௞࢙௥, where ࡼ௥,௞ = ,௥,௞ࡼ … ,  ௥,௥ାଵ.                (3)ࡼ௥ାଵ,௥ାଶࡼ
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In Equation (3), ࡼ௥,௞ expresses the predictive 
operator. Following the same concept, 
Khoshnavaz et al. (2016a, 2016b) described 
the travel time predictive operator as:  ݐ௥ି௞ = ௥ݐ − ൫∑ ௫௥ି௠௞ିଵ௠ୀ଴ߪ ൯∆(4)                  ,ݔ 

Where, ∆x denotes receiver spacing.  
As mentioned in the previous section, 
predictive painting is a powerful numerical 
tool that can be used in several areas  
of seismic data processing and interpretation. 
In this research, this numerical tool was  
used to attenuate special aliasing in CMP 
gather by nonlinear interpolation of seismic 
events along local slopes. Since the 
predictive painting has the ability of 
connecting more than two points of a seismic 
event, it gives more information about the 
curvature or nonlinearity of the seismic 
events. An outline of the interpolation 
procedure conducted in this research is 
summarized as:  
- Implementation of predictive painting from 
zero- to longest offset for all the events in a 
CMP gather, 
- Extraction of all TWT curves in the gather 
- Increasing the number of samples by the 
application of cubic interpolation along each 
estimated TWT curve 
- Averaging amplitudes of the original 
neighbouring samples and substituting the 
corresponding results to the new/interpolated 
samples. 
Analogous to Burnett and Fomel (2009), 
Casasanta and Fomel (2011), and 
Khoshnavaz et al. (2016b), the whole 
wavefront from the zero- to maximum offsets 
was predicted. It is also possible to divide the 
whole offset to smaller segments and to 
apply the above steps in each segment 
(Fomel, 2010). 
 

3. Synthetic data examples 
3-1. Single linear event 
In this example, seismic interpolation using 
predictive painting is applied to a synthetic 
dataset including a single linear event 
generated by convolutional modelling. In this 
example and also the following synthetic 
examples, a Ricker wavelet with dominant 
frequency of 20 Hz was used. Figure 1a 
shows the corresponding gather decimated by 
the factor of two. Figure 1b shows the f-k 

spectrum of the decimated gather, which 
indicates the existence of spatial aliasing.   
In CMP gather, one can take advantage of the 
prior knowledge of dip orientation. As an 
example, dip orientations are either positive 
or negative in a CMP gather of an off-end 
survey. In a spatially aliased CMP gather, 
there are two types of dips: true and aliased 
dips. The mentioned prior knowledge of dip 
orientation helps to avoid wrong estimation 
of dips. Figure 1c shows the estimated dips 
by the application of plane wave destructor 
(Fomel, 2002). As mentioned in the previous 
section, the whole recorded wavefront from 
the zero to maximum offsets was considered 
for predictive painting. Figure 1d illustrates 
the corresponding zero-offset TWTs 
estimated by the application of predictive 
painting.  
Given the estimated zero-offset TWTs, one 
can extract the TWT curves using the fact 
that TWTs with the same zero-offset TWT 
belong to the same seismic wavefront. The 
procedure of predicting TWT curves from the 
predicted zero-offset TWTs is known as 
time-warping (Burnett and Fomel, 2009). 
Figures 1e-1f show the corresponding time-
warp spectrum, and comparison between the 
exact and the predicted TWT curve for the 
liner event with the zero-offset intercept time 
of 0.4 s. In order to have a better recognition 
of the estimated attributes at different time 
horizons, the local slopes, zero-offset TWT 
and time-warp spectra were filtered out in the 
areas where there was no data. 
Given the predicted TWT curves, we 
increased the number of samples using  
cubic interpolation, although using cubic  
and linear interpolations gives the same 
results in this example, since there is only  
a single linear seismic event. The amplitudes 
of the neighbouring traces were averaged  
and utilized to construct the new interpolated 
traces. Figures 1g to 1i show the interpolated 
section, its f-k spectrum and the amplitude 
residual between the original and interpolated 
data, respectively. It is observed that  
the spatial aliasing has been removed and 
there is almost no amplitude residual. It is 
due to the fact that there was only a single 
dipping event in the data; hence, uncertainty 
in the estimation of the local slopes is 
minimal. 
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3-2. CMP gather with nonlinear events 
In this example, the presented interpolation 
technique is applied to a synthetic  
CMP gather including several nonlinear 
events. Figure 2a shows the CMP gather 
decimated by the factor of two along offset 
axis. Figure 2b shows the f-k spectrum of the 
decimated CMP gather, which indicates  
the presence of spatial aliasing. This paper 
followed the same workflow used for  
the interpolation of seismic data in the 
previous example. Figures 2c to 2e show  
the dips estimated by plane wave destructor, 
estimated zero-offset TWT by the predictive 
painting and the estimated TWT curves  
using time-warping, respectively. To quantify 
the accuracy of the predicted TWTs, the 
exact TWT curve with zero-offset intercept 
time of 0.95 s was compared with its 
predicted TWT curve in Figure 2f. Note that 
time-warping faces the “stretch” problem in 
the area of shallower events at far offsets 
(similar to NMO stretch). It results in 
discontinuous TWT curves in time-warp 
spectrum. In order to deal with this, cubic 
interpolation was applied along the offset 
axis for each time-warp spectra in all the 
examples presented in this paper. Figures 2g 
to 2i show the interpolated section, its f-k 
spectrum and the corresponding amplitude 
residual between the original and the 
interpolated data, respectively. Spatial 
aliasing was removed but the amplitude 
difference is not as negligible as it was in the 
previous example. This was expected to 
happen because of dip variation within the 
CMP gather. 
 
3-3. Sensitivity to noise 
Accuracy of all local slope-based signal 
processing, imaging and inversion techniques 
depends on the accuracy of the estimated 

local slopes. Plane wave destructor is less 
sensitive to white/band-limited noise 
comparing to the other local slope estimation 
techniques that use numerical differentiation 
(Khoshnavaz et al., 2016a). This is because 
plane wave destructor relies on smoothing 
and regularisation of seismic data (Fomel, 
2002); however, when signal-to-noise ratio 
(S/N) is very low, the precision of the 
estimated local slopes by plane wave 
destructor followed by the final interpolation 
results will also be affected. 
To evaluate the performance of the 
interpolation technique in the presence of 
noise, the synthetic CMP gather used in the 
previous example was contaminated with 
band-limited noise with the frequency 
content of 5-150 Hz so that the S/N was 10 
(Figure 3a). This level of S/N is fairly 
acceptable for the residual noise left in a 
gather/section after pre-processing and 
denoising (Chen et al., 2014). Equation (5) 
was used to scale the S/N. ௌே = ாೞாಿ = ∑ ∑ ஺ೄ೔,ೕమ೘ೕసష೘೙೔సభ∑ ∑ ஺ಿ೔,ೕమ೘ೕసష೘೙೔సభ  ,                            (5) 

where AS and AN denote the amplitude of 
signal and noise at each data sample, 
respectively. Indices i and j denote trace and 
sample number for each data sample within 
the windowed seismic event (2m), 
respectively. Figure 3b shows the f-k 
spectrum of the decimated noisy CMP gather 
that indicates the presence of spatial aliasing. 
Figures 3c to 3e illustrate the dips estimated 
by plane wave destructor, estimated zero-
offset TWT using predictive painting, and the 
estimated TWT curves using time-warping, 
respectively. Figure 3f compares the 
accuracy of the predicted TWTs and the 
exact TWT curve with zero-offset intercept 
time of 0.95 s.  
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4. Field data example 
In this example, the interpolation technique 
was applied on a marine CMP gather 
provided by Geoscience Australia. Figure  
4a shows the CMP gather decimated by  
the factor of two. Figure 4b shows the 
f-k spectrum of the decimated marine CMP 
gather expressing the presence of spatial 
aliasing. This example followed the same 
workflow used for the interpolation of  
the synthetic seismic data examples. Figures 
4c to 4e show the estimated local slopes/dips, 
zero-offset TWTs, and TWT curves by  
time-warping, respectively. Figure 4f shows 
several predicted TWT curves indicated  
by the red lines that are plotted on top of  
the decimated CMP gather. One can see that 
the predicted curves follow the seismic 
trends. 
Figures 4g to 4i illustrate the interpolated 
CMP gather, the corresponding f-k spectrum 
and the amplitude residual between the initial 
and the interpolated marine CMP gathers, 
respectively. As can be seen, spatial aliasing 
is highly attenuated with a negligible 
amplitude residual. 
 
5. Discussion 
The performance of de-aliasing by nonlinear 
interpolation of seismic data in CMP  
domain was studied on several synthetic  
and field data examples that did not  
contain conflicting events/dip. The  
results were acceptable as the amplitude 
differences between the original  
un-decimated data and the interpolated  
data were not considerable. The question  
is: how well does the interpolation technique 
work in the presence of conflicting events?  
In principle, it should be misdirected at  
the location of the intersections of the events 
where there is more than a single dip. Here,  
a feasibility study was done by applying  
the interpolation technique on a CMP gather 

containing several conflicting events. The 
CMP gather decimated by the factor of two 
along the spatial axis is shown in Figure 5a. 
The corresponding f-k spectrum is shown in 
Figure 5b, indicating the existence of spatial 
aliasing.  
The corresponding estimated dips, zero-
offset TWTs, and the time-warp spectrum are 
shown in Figures 5c to 5e, respectively. 
Figure 5f shows the main predicted TWT 
curves indicated by the different colours over 
laid the CMP gather. It confirms our 
expectation about the occurrence of 
misdirection during the predictive painting. 
We stepped further and applied the 
interpolation technique on the CMP gather 
using the over and/or under-estimated TWT 
curves.  
Figures 5g to 5i show the results  
of interpolation, the corresponding f-k 
spectrum and the amplitude difference 
between the initial and the interpolated  
data, respectively. The results show that  
the interpolation technique by the predictive 
painting surprisingly works. The amplitude 
difference is negligible among the whole 
section except at the location of some 
intersections. The explanation is the 
predicted TWT curves cover the whole 
section and since the technique relies on the 
interpolation of each seismic trace from its 
neighbouring traces, all the section is 
interpolated. 
To predict TWT curves, the whole recorded 
wavefront from the zero- to maximum  
offsets was used. The error in prediction  
of the curves might be minimized  
by applying the predictive painting locally.  
It can be done by dividing the whole offset 
into smaller portions followed by  
the implantation of the predictive painting  
on each individual portion. It is the subject  
to test as the future of the presented  
work.  
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6. Conclusion 
Predictive painting is a powerful tool in the 
estimation of TWT of seismic events, 
dominantly in time-space domain. It has 
become popular in the area of seismic 
imaging, seismic anisotropy and seismic 
interpretation within the past few years. This 
paper employed the predictive painting for 
the attenuation of spatial aliasing in CMP 
domain by non-linear interpolation of seismic 
data along local slopes. The performance of 
the proposed interpolation technique was 
demonstrated on several synthetic data 
examples and a field marine CMP gather. 
Since the presented workflow is time-
efficient and frequency-independent, it can 
be used as an alternative technique for 
seismic data interpolation, specifically for 
offshore data that does not contain 
considerable level of noise. The road ahead is 
to employ the presented technique for 
seismic data extrapolation.  
 
Acknowledgements 
Authors would like to acknowledge 
Geoscience Australia for providing the 
marine data. The authors would also like to 
acknowledge Madagascar Open-Source 
Project for providing the multidimensional 
data analysis package.  
 
References 
Bóna, A., 2011, Shot-gather time migration 

of planar reflectors without velocity 
model. Geophysics, 76(2), S93–S101, doi: 
10.1190/1.3549641.  

Burnett, W. and Fomel, S., 2009, 3D 
velocity-independent elliptically 
anisotropic move out correction. 
Geophysics, 74(5), WB129–WB136, doi: 
10.1190/1.3184804. 

Casasanta, L. and Fomel, S., 2011, Velocity-
independent τ-p move out in a 
horizontally layered VTI medium. 
Geophysics, 76(4), U45-U57, doi: 
10.1190/1.3595776. 

Chen, Y., Fomel, S. and Hu, J., 2014, 
Iterative deblending of simultaneous-
source seismic data using seislet-domain 
shaping regularization. Geophysics, 79, 
V183-V193, doi: 10.1190/GEO2013-
0449.1. 

Chen, Y., Zhang, L. and Mo, L., 2015, 
Seismic data interpolation using nonlinear 

shaping regularization. Journal of Seismic 
Exploration, 24(5), 327-342, 
http://www.geophysical-
press.com/contents_jse_vol_24_4.htm. 

Claerbout, J. F., 1985, Imaging the Earth’s 
Interior. Blackwell Scientific 
Publications, Inc., 
http://sepwww.stanford.edu/sep/prof/iei2. 

Claerbout, J. F., 1992, Earth Soundings 
Analysis: Processing Versus Inversion. 
Blackwell Scientific Publications, 
http://sepwww.stanford.edu/sep/prof/pvi.p
df. 

Crawley, S., 2000, Seismic trace 
interpolation with nonstationary 
prediction error filters: Ph.D. thesis, 
Stanford University. 

Fomel, S., 2002, Applications of plane-wave 
destruction filters. Geophysics, 67, 1946–
1960, doi: 10.1190/1.1527095. 

Fomel, S., 2003, Seismic reflection data 
interpolation with differential offset and 
shot continuation. Geophysics, 68, 733–
744, doi: 10.1190/1.1567243. 

Fomel, S., 2007, Velocity-independent time-
domain seismic imaging using local event 
slopes: Geophysics, 72(3), S139–S147, 
doi: 10.1190/1.2714047. 

Fomel, S., 2010, Predictive painting of 3D 
seismic volumes. Geophysics, 75(4), 
A25–A30, doi: 10.1190/1.3453847. 

Fomel, S., Sava, P., Vlad, I., Liu, Y. and 
Bashkardin, V., 2013, Madagascar: open-
source software project for 
multidimensional data analysis and 
reproducible computational experiments. 
Journal of Open Research Software, 1(1), 
p. e8, doi:  
oftware.metajnl.com/articles/10.5334/jors.
ag/ 

Gan, S., Wang, S., Chen, Y., Jin, Z. and 
Zhang, Y., 2015, Dealiased Seismic Data 
Interpolation Using Seislet Transform 
With Low-Frequency Constraint, IEEE 
Geoscience and Remote Sensing Letters, 
12, 2150-2154, doi: 
10.1109/LGRS.2015.2453119. 

Gan, S., Chen, Y., Wang, S., Chen, X., 
Huang, W. and Chen, H., 2016, 
Compressive sensing for seismic data 
reconstruction using a fast projection onto 
convex sets algorithm based on the seislet 
transform. Journal of Applied 
Geophysics, 130, 194-208, doi: 



84                                      Journal of the Earth and Space Physics, Vol. 44, No. 4, Winter 2019 

 

10.1016/j.jappgeo.2016.03.033. 
Gülünay, N., 2003, Seismic trace 

interpolation in the Fourier transform 
domain. Geophysics, 68, 355–369, doi: 
10.1190/1.1543221. 

Herrmann, F. J. and Hennenfent, G., 2008, 
Non-parametric seismic data recovery 
with curvelet frames: Geophysical Journal 
International, 173(1), 233–248, doi: 
10.1111/j.1365-246X.2007.03698.x. 

Ibrahim, A., Terenghi, P. and Sacchi, M. D. , 
2015, Wavefield Reconstruction using a 
Stolt-Based Asymptote and Apex Shifted 
Hyperbolic Radon Transform: 55th 
Annual International Meeting, SEG, 
Expanded Abstracts, 3836-3841, doi: 
10.1190/segam2015-5873567.1. 

Karimi, P., 2015, Structure-constrained 
relative acoustic impedance using 
stratigraphic coordinates. Geophysics, 
80(3), A63–A67, doi: 10.1190/GEO2014-
0439.1. 

Karimi, P., Fomel, S., Wood, L. and Dunlap, 
D., 2015, Predictive coherence: 
Interpretation, 3(4), SAE1–SAE7, doi: 
10.1190/INT-2015-0030.1. 

Khoshanavaz, M. J., Bóna, A., Urosevic, M., 
Dzunic, A. and Ung, K., 2016a, Oriented 
prestack time migration using local slopes 
and predictive painting in common-source 
domain for planar reflectors. Geophysics, 
81(6), S409–S418, doi: 
10.1190/GEO2016-0127.1. 

Khoshanavaz, M. J., A. Bóna, and Urosevic, 
M., 2016b, Velocity-independent 
estimation of kinematic attributes in 
vertical transverse isotropy media using 
local slopes and predictive painting. 
Geophysics, 81(5), U73-U85, doi: 
10.1190/GEO2015-0638.1. 

Khoshnavaz, M. J., 2017, Oriented time-
domain dip move out correction for planar 
reflectors in common-source domain. 
Geophysics, 82(6), U87-U97, doi: 
10.1190/geo2016-0577.1 

Leggott, R. J., Wombell, R., Conroy, G., 
Noss, T. and Williams, G., 2007, An 
efficient least-squares migration: 69th 
Conference and Exhibition, EAGE, 
Expanded Abstracts, P178, doi: 
10.3997/2214-4609.201401856. 

Liu, Y. and Fomel, S., 2010, OC-seislet: 
Seislet transform construction with 
differential offset continuation. 

Geophysics, 75(6), WB235–WB245, doi: 
10.1190/1.3479554. 

Liu, Y. and Fomel, S., 2011, Seismic data 
interpolation beyond aliasing using 
regularized nonstationary auto regression. 
Geophysics, 76(5), V69–V77, doi: 
0.1190/GEO2010-0231.1. 

Lu, L., 1985, Application of local slant-stack 
to trace interpolation: 55th Annual 
International Meeting, SEG, Expanded 
Abstracts, 560–562, doi: 
10.1190/1.1892818. 

Naghizadeh, M. and Sacchi, M. D. , 2007, 
Multistep autoregressive reconstruction of 
seismic records. Geophysics, 72(6), 
V111–V118, doi: 10.1190/1.2771685. 

Naghizadeh, M. and Sacchi, M. D., 2010, 
Beyond alias hierarchical scale curvelet 
interpolation of regularly and irregularly 
sampled seismic data. Geophysics, 75(6), 
WB189–WB202, doi: 
10.1190/1.3509468.  

Porsani, M., 1999, Seismic trace 
interpolation using half-step prediction 
filters. Geophysics, 64, 1461–1467, doi: 
10.1190/1.1444650. 

Ronen, J., 1987, Wave-equation trace 
interpolation. Geophysics, 52, 973–984, 
doi: 10.1190/1.1442366. 

Sacchi, M. D., Verschuur, D. J. and Zwartjes, 
P. M., 2004, Data reconstruction by 
generalized deconvolution: SEG, 
Expanded Abstracts, 23, 1989–1992, doi: 
10.1190/1.1843303. 

Shannon, C. E., 1948, A Mathematical 
Theory of Communication: Bell System 
Technical Journal, 27(3), 379–423, 
doi:10.1002/j.1538-7305.1948.tb01338.x. 

Spitz, S., 1991, Seismic trace interpolation in 
the F-X domain. Geophysics, 56, 785–
794, doi: 10.1190/1.1443096. 

Stolt, R. H., 2002, Seismic data mapping and 
reconstruction. Geophysics, 67, 890–908, 
doi: 10.1190/1.1484532. 

Trad, D., Ulrych, T. J. and Sacchi, M. D., 
2002, Accurate interpolation with high-
resolution time-variant Radon transforms. 
Geophysics, 67, 644–656, 
10.1190/1.1468626. 

Trickett, S. R., 2003, F-xy eigenimage noise 
suppression. Geophysics, 68, 751–759, 
doi: 10.1190/1.1567245. 

Turner, G., 1990, Aliasing in the τ-p 
transform and the removal of spatially 



Attenuation of spatial aliasing in CMP domain by non-linear interpolation of …                        85 

 

aliased coherent noise. Geophysics, 55, 
1496–1503, doi: 10.1190/1.1442797. 

Wang, J., Ng, M. and Perz, M., 2009, Fast 
high-resolution Radon transforms by 
greedy least-squares method. SEG, 
Expanded Abstracts, 28, 3128–3132, doi: 
10.1190/1.3255506. 

Yilmaz, O., 2001, Seismic data analysis. 
SEG, doi: 10.1190/1.9781560801580. 

Yu, Z., Ferguson, J., McMechan, G. and 
Anno, P., 2007, Wavelet-Radon domain 
dealiasing and interpolation of seismic 
data. Geophysics, 72(2), V41–V49, 
10.1190/1.2422797. 

Zwartjes, P. M. and Sacchi, M. D. , 2007, 
Fourier reconstruction of nonuniformly 
sampled, aliased seismic data. 
Geophysics, 72(1), V21–V32, doi: 
10.1190/1.2399442. 


