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Abstract 
This research deals with assessment of geothermal potential in parts of middle Benue Trough, 
north-east of Nigeria. The study area lies within the Longitude 9°E – 10°E and Latitude 8°N – 
9.50°N with an estimated total area of 18,150 km2. Regional/Residual separation was performed 
on the total magnetic intensity using polynomial fitting. The residual map was divided into 14 
overlapping spectral blocks, and the log of spectral energies were plotted against frequency. 
Centroid depth and depth to top boundary obtained were used to estimate the Curie point depth 
isotherm, which was then used to compute geothermal heat flow of the study area. The result 
shows that the geothermal heat flow varies between 50.02 and 85.1 mWm-2 with highest value in 
the southern part (Akiri and Ibi) and north-western part (Pankshin) of the area. The geothermal 
heat flow obtained from this study indicates that the study area possess a good source of 
geothermal potential. The aero-radiometric data covering the study area was also analysed to 
estimate the radiometric heat contribution. The analysis of aero-radiometric data shows that the 
area possesses high content of Uranium, Potassium and Thorium. The radioactive heat production 
values vary between 1.58 μW/m3 and 2.53 μW/m3 with an average of 2.21 μW/m3. Thus, 
harnessing the geothermal potential in this area would be of added values and advantage to power 
generation in Nigeria. 
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1. Introduction 
In a contemporary Nigeria where an 
insufficient production of electricity and 
other energy sources are operated at lowest 
ebb, thereby giving rise to an epileptic power 
supply, poor distribution output and other 
economic down turn. It is of an ample 
advantage to locate the potentials of several 
other forms of renewable energy points 
including geothermal resources. The 
availability of geothermal energy, which 
results from radioactive decay of minerals 
within Earth's core are readily utilised by 
several country of the world. However, in 
Nigeria quite a little of this alternative energy 
sources are known. This is even with the 
existence of the following known potential 
entities such as; Ikogosi warm spring (37 °c) 
in Ekiti State, Wikki warm spring (39 °c) in 
Bauchi State, and Rafin-Ruwa warm spring 
(45 °c) located in Plateau State (Babalola, 
2004; Sedara and Joshua, 2013; Ikechukwu 
et al., 2015). 

Geothermal energy is a viable and 
sustainable source of energy from deep inside 
the earth (Dickson and Fanelli, 2004) that  
has the potential of supplying source base-
load, drive long-term energy and emission 
reduction of greenhouse gas (Muffler and 
Cataldi, 1978). It is viewed as a sustainable 
power source asset from the ground, as  
the heat exuding from the inside of the  
Earth is basically inexhaustible. The Earth 
interior can be relied upon to remain greatly 
hot for billions of years to come, 
guaranteeing a basically inexhaustible stream 
of heat. 
The middle Benue Trough has received 
limited attention in the past from  
earth scientists partly due to the lack  
of immediate geologic and economic values. 
However, in view of increased efforts  
to explore for new and more energy locations 
in  Nigeria, it is fast becoming an important 
study area (Ajayi and Ajakaiye, 1986; 
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Akande et al., 2011; Bako, 2010; Kasidi  
and Nur, 2012; Nwosu, 2014; Offodile, 1976; 
Ofoegbu, 1985; Onuoha et al., 1994).  
Since geophysical crustal temperature studies 
in the area are minimal, the results of this 
study would definitely add to the available 
geophysical informations in that like. 
 
1-1. Location and Geology of the Study 
Area 
The study area (Fig. 1) is located in the 
north-eastern part of Nigeria, lying between 
Latitudes 8°N and 9.5°N and longitudes 9°E 
and 10°E with estimated total area of 18,150 
km2. It is bounded by middle Benue Trough 
(Fig. 2). The Benue Trough comprises of a 
progression of rift basins that model a portion 
of the Central West African Rift System of 
the Niger, Cameroon, Chad and Benin 
Basement fracture, subsidence, block faulting 
and cracking. 
Benkhelil (1982 and 1989), pointed out that 
the Benue Trough generally has been 
geographically and structurally subdivided 
into three parts erroneously termed as "lower 
Benue Trough", "middle Benue Trough" and 
an "upper Benue Trough". The area is housed 
by middle Benue trough, the study conducted 
by Offodile (1976) distinguishes six 
sedimentary formations in the middle Benue 
Trough, which are Asu River Group, Keana 
Formation, Awe Formation, Ezeaku 
Formation, Awgu Formation and Lafia 
Formation. 
The oldest, Asu River Formation being 
middle to Albian and the youngest, Lafia 
Formation is of the Maestrichtian age. The 
lithologic composition of the Asu River 
Group comprises limestones, shales, 
micacous siltstones, mudstones and clays 
(Offodile, 1976; Obaje, 1994). 
The deposition of the Awgu Formation marks 
the end of marine sedimentation in this part 
of the Benue Trough. The formation is made 
up of bluish-grey to dark-black carbonaceous 
shale, calcareous shale, shaley limestones, 
limestones, sandstones, siltstones, and coal 
seams (Offodile, 1976). 
The deposition of the Ezeaku Formation is 
attributed to the beginning of marine 

transgression in the Late Cenomanian. The 
sediments are made up mainly of calcareous 
shales, micaceous fine to medium friable 
sandstones and beds of limestones which are 
in places shelly. 
The Awe Formation was deposited as 
passage (transitional) beds during the late 
Albian to early Cenomanian regression. The 
formation consists of flagy, whitish, medium 
to coarse grained calcareous sandstones, 
carbonaceous shales and clays. 
The Keana Formation resulted from the 
Cenomanian regression that deposited fluvio-
deltaic sediments. The formation consists of 
cross-bedded, coarse grained feldsparthic 
sandstones, occasional conglomerates, and 
bands of shales and limestones towards the 
top (Obaje, 1994). 
The Lafia Formation is the youngest 
formation in this area. The formation was 
deposited under continental condition 
(fluviatile) in the Maastrichtian and lies 
unconformably on the Awgu Formation. It is 
lithologically characterized by ferruginized 
sandstones, red, loose sands, flaggy 
mudstones, clays and claystones (Obaje, 
1994). 
The work of Cratchley and Jones (1965), 
Burke et al. (1970), Offodile (1976 and 
1984), Osazuwa et al. (1981), Ofoegbu 
(1985) and Patrick et al. (2013) have more on 
the geology of the Benue Trough. 
 
2. Materials and Method 
For this research, six aeromagnetic data  
sheet and six aero-radiometric data  
sheet used were procured from the Nigerian 
Geological Survey Agency (NGSA), Abuja 
as part of across the nation aeromagnetic  
and aero-radiometric study carried out in 
2009 by Fugro Airborne survey. The six 
aeromagnetic and aero-radiometric data 
sheets used were 190 (Pankshin), 191 
(Wasa), 211 (Kwalla), 212 (Shendam), 232 
(Akiri), 233 (Ibi), which correspond to 
latitudes 8°N to 9.5°N and longitudes 9°E to 
10°E. Each gridded map scaled 1:100,000 
covers an area of about 3025 km2 (i.e. 55 km 
x 55 km) while the total area investigated 
covers 18,150 km2.  
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by transforming the spatial data into 
frequency domain. 
Spector and Grant (1970) illustrated that the 
thickness depth and width of a magnetic 
source ensemble could affect the shape of 
energy spectrum. The strong term that shapes 
this energy spectrum is the depth factor. They 
demonstrated that the depth could be 
estimated using Equation (1). (ݎ)ܧ = eିଶ୞୰                                              (1) 

where E(r) = spectral energy Normalised 
r = frequency 
h= depth 
If h is the mean depth of a layer and the 
depth factor for the ensemble of anomalies is 
e-2rh; hence, a plot of the energy spectrum of 
a single ensemble of prism against angular 
frequency r would yield a straight line graph 
whose slope is directly proportional to the 
average source depth, h of that ensemble 
(Spector and Grant, 1970). That is, the 
logarithm plot of the radial frequency would 
yield a straight line whose slope is: 
 ݉ = −2ℎ ℎ = −௠ଶ                                                       (2) 

Equation (2) can be specifically applied if the 
frequency unit is in radian per unit distance 
(kilometer as it is in this research), if its unit 
is in cycle per unit distance as it is in this 
work, the expression becomes: ℎ = − ௠ସగ                                                     (3) 

From the slopes of the plot, the first and the 
second magnetic source depth was 
respectively estimated. 
 
2-2. Curie point depth estimation 
The bottom of a magnetic source indicate the 
thermal boundary at which magnetic mineral 
in the crust move from ferromagnetic status 
to paramagnetics as a result of the increase in 
temperature as depth increases down the 
crust (Nagata, 1961; Ross et al., 2006). This 
thermal boundary is referred to as Curie point 
depth and it is the nethermost part of the 
crust to have material which develops 
discernible mark in a magnetic anomaly map 
(Bhattacharryya and Leu, 1975). This point is 
assumed to be the depth for the geothermal 
source (magmatic chamber), where most 
geothermal reservoir tapped their heat from a 

geothermal environment (Eleta and Udensi, 
2012). 
This Curie point has a temperature of 550 °C 
± 30 °C. For temperature above Curie-point, 
magnetic materials lose their magnetic 
ordering and both induced and remnant 
magnetisation disappear, thus for 
temperatures above 580°C, those materials 
will begin to encounter ductile deformation. 
The methods of Curie Point Depth 
determination utilize spectrum analysis 
techniques to separate influences of the 
different body parameters in the observed 
magnetic anomaly field. Fundamentally, the 
method of Spector and Grant (1970) 
estimates the average depth to the top 
boundary of the magnetized layer from the 
slope of the log power spectrum while the 
method of Bhattacharrya and Leu (1975) 
obtains the depth to the centroid (effects from 
the bottom) of the causative body using a 
single anomaly interpretation. Okubo et al. 
(1985) effectively combined and expanded 
both methods to propose an algorithm for 
regional geomagnetic interpretation oriented 
to the purposes of geothermal exploration. 
The Curie point depth is evaluated in two 
stages as proposed by Bhattacharyya and Leu 
(1975); the first stage is the estimation of 
depth to centroid Z0, of magnetic source from 
the slope of the longest wavelength part of 
the spectrum, using Equation (4) (Okubo et 
al., 1985 and 1989; Dolmaz et al., 2005; 
Eletta and Udensi, 2012). ln[ඥ௣(ୱ)|ୱ| ] = ܣ݈݊ −  s|Z଴                         (4)|ߨ2

where 
P(s) = radially averaged power spectrum of 
the anomaly, 
/s/= the wave number,  
and A = constant. 
The second stage is the estimation of the 
depth to the top boundary Z1 from the slope 
of the second longest wavelength part of the 
spectrum (Okubo et al, 1985 and 1989; 
Dolmaz et al. 2005; Eletta and Udensi, 
2012): lnඥ[݌(s) = ܤ݈݊ −  s|Zଵ                       (5)|ߨ2

where B, is the sum of constant independent 
of |s|.  
The basal depth Zb also known as Curie point 
depth was calculated from Equation (6). 
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(Okubo et al., 1985 and 1989; Eletta and 
Udensi, 2012). ܼ௕ = 2ܼ଴ − ܼ௧                                            (6) 

where Z0 is centroid depth and Zt is depth to 
the top boundary. 
 
2-3. Geothermal Gradient and Heat Flow 
The fundamental relation for conductive heat 
movement is Fourier’s law (Tanaka et al., 
1999). In one-dimensional case under the 
notions that the direction of the temperature 
change is vertical and the temperature 

gradient (ௗ்ௗ௓) is constant, Fourier’s law is 

expressed as given in Equation (7) (Tanaka et 
al., 1999; Kasidi and Nur, 2012; Ofor and 
Udensi, 2014): ݍ = −݇ ௗ்ௗ௓                                                   (7) 

where 
q = the heat flux (heat transfer per unit time) 
k = coefficient of thermal conductivity. 
From Tanaka et al. (1999), the Curie 
temperature (θ) can then be estimated from 
the expression: θ = (ௗ்ௗ௓)ܼ௕    and    

ௗ்ௗ௓ = ( ஘௓್)                    (8) 

making 
ௗ்ௗ௓ (Geothermal gradient) the subject 

of the formula in Equations (7) and (8) and 
comparing the result will give:  ܼ௕ = θ ௞௤                                                      (9) 

Equation (9) shows that Curie point depth is 
inversely proportional to heat flow and 
signifies that areas of high heat flow 
experience shallower Curie point depth, on 
the other hands, those with relatively low 
heat flow have deeper Curie point depth 
(Tanaka et al., 1999; Ross et al., 2006). An 
average surface heat flow value was 
estimated using Equations (7) and (8) and 
was predicated on possible Curie temperature 
of 580°C and thermal conductivity of 2.5 
Wm−1°C−1 as suggested by Stacey (1977), 
which is the average thermal conductivity for 
igneous rocks. 
 
2-4. Airborne Radiometric Method 
Geophysical survey is appreciated more 
when two or more geophysical methods are 
employed. Generally airborne radiometric 

survey that includes the repeated radiometric 
measurement of gamma ray flux that strikes 
at least one detector mounted in a moving 
grid like pattern aircraft, is always flown in 
conjunction with the magnetic method. 
Most of the continental heat flow emanates 
from the decay of radioactive isotopes in the 
crust; therefore, locating regions having 
higher concentration of radioactive isotope or 
estimating the radioactive heat production 
can be the same as locating areas with high 
heat flow (Holmberg et al., 2012). 
 

2-5. Radioactive Heat Analysis 
More than 98% of present-day heat 
production is the result of the decay series 
238U and 232Th and the single step decay of 
40K. The isotope 235U has a significantly 
shorter half-life than 238U. Other short-lived 
radioactive isotopes may have made 
significant thermal contributions in early 
stages of the Earth’s history, but they are not 
detectable now. Other long-lived radioactive 
isotopes also exist, but their decay rates are 
so slow that they have never made any 
significant contribution to the Earth’s heat 
(Slagstad, 2008). 
Thus, According to Kuforijimi and 
Christopher (2017), Megwara et al. (2013), 
Holmberg et al. (2012) and Abraham et al. 
(2014); radiogenic heat production (H) is 
primarily concerned with the decaying of  
radioactive isotopes of  232Th, 238U and 40K 
and can be computed in accordance with the 
concentration (C) of the respective elements 
via empirical equation by Rybach (1976): 
(ଷ݉/ܹߤ)ܪ  ௎ܥ	9.52)ߩ =	 + ௛்ܥ	2.56	 	+ (௄ܥ	3.48	 × 10ିଶ  (10) 

where,  
H = radioactive heat production 
ρ = density of rock adapted from Kuforijimi 
and Christofer (2017) and Telford et al. 
(1990).  
Cu, CTh and Ck are the concentrations of 
Uranium, Thorium and Potassium 
respectively.  
 
3. Result and Discussion 
3-1. Total magnetic intensity anomaly and 
the residual magnetic intensity anomaly 
The total magnetic intensity map, TMI  
(Fig. 3), and the residual magnetic intensity 
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Table 1. Location and depth estimation of centroid depth (Z0), depth to basement (Zt), CPD (Zb), geothermal gradient and 
Heat flow. 

Blocks 
Longitude 
(degree) 

Latitude 
(degree) 

Depth to 
centroid, 
Zo(km) 

Depth to 
the top 

boundary 
Zt(km) 

Curie 
point 
depth, 
Zb(km)

Geothermal 
gradient 
(oc/km) 

Heat flow 
(mW/m-2) 

A 9.25 9.25 9.54 2.04 17.04 34.04 85.1 

B 9.75 9.25 13.30 2.50 24.1 24.06 60.17 

C 9.25 8.75 11.40 2.40 20.66 28.07 70.19 

D 9.75 8.75 10.82 1.98 19.66 29.50 73.75 

E 9.25 8.25 9.56 1.20 17.92 32.48 81.194 

F 9.75 8.25 9.36 1.40 17.32 33.49 83.71 

G 9.5 9.25 10.60 2.00 19.20 30.21 75.52 

H 9.5 8.75 15.40 3.20 27.40 21.17 52.92 

I 9.5 8.25 10.44 1.70 19.18 30.24 75.59 

J 9.5 9.0 11.04 1.50 20.58 28.18 70.45 

K 9.5 8.0 12.98 1.84 24.12 24.05 60.11 

L 9.25 8.25 14.70 2.08 27.32 21.23 53.07 

M 9.75 8.25 11.32 1.86 20.78 27.91 55.82 

N 9.5 8.25 12.42 1.65 23.19 25.01 50.02 

 
3-3. Curie point Depth (CPD) 
The results of the spectral analysis of 
aeromagnetic anomalies over the area shows 
that the Curie point depth estimates (using 
equation 6) range between 17.04 km and 27.4 
km (Table 1). Literatures such as 
(Bhattacharrya and Leu, 1975; Cornad et al., 
1983, Tanaka et al., 1999; Nwankwo et al., 
2011; Eleta and Udensi, 2012) indicate that 
CPD is greatly dependent on the geologic 
conditions of an area under consideration, the 
CPD are shallower in volcanic and 
geothermal fields. 
Fig. 6 is the Curie point depth contour map. 
High values of 21 km to 27.5 km could be 
seen at the central region (Kwalla and 
Shendam) to the north-eastern part (Wasa) 
and lower values of 17 km to 19.5 km could 
be observed at the central southern part 
(Akiri and Ibi) and the north western part 
(Pankshin). The low value might be as a 
result of igneous intrusion or as a result of 
the dominance of Ezeaku formation 
(sandstone and limestone) in the area. 
 
3-4. Geothermal Gradient 
Using a Curie temperature of 580 °C and the 

estimated Curie point depths, geothermal 
gradient variation were computed and the 
geothermal gradient map (Fig. 7) was plotted. 
The results show that geothermal gradients 
(Table 1) vary between 21.17 °c/km and 
34.04 °c/km with average value of 
27.83°c/km. Most of the higher values are 
located at the southern and north-western 
parts of the study area.  
 
3-5. Heat Flow 
The results (Table 1) show that the heat flow 
values (estimated in accordance with 
equation 7) of the area vary between 50.02 
mW/m2 and 85.1 mW/m2, and the heat flow 
contours are plotted in Fig. 8. The contour 
shows low values of 52 mW/m2 to 70 
mW/m2, which could be observed at the 
central region (Kwalla and Shendam) to the 
north-eastern part (Wasa) and higher value of 
74 mW/m2 to 85 mW/m2 can be located at 
most part of the southern area (Akiri and Ibi) 
and the north western part (Pankshin). The 
higher value might be as a result of the 
dominance of Ezeaku formation (sandstone 
and limestone) in the area. Both Geothermal 
gradient and heat flow show a linear 
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3-6-4. Ternary (K, Th, U ) content map of 
the study area 
The ternary map (Fig. 12) of the area was 
generated from the combination of uranium, 
thorium and potassium concentrations, it 
depict the concentration of K (in red), Th (in 
green) and U (in blue), the white colour is 
related with high counts of the three isotopes, 
while the black colour depicts low levels of 
the three isotopes. 
It was noticed that potassium concentration 
was high in most part of the northern region 
trending from west-central to the north-
eastern part, higher values of potassium 
concentration were also observed in the 
south-eastern edge of the area, twhich could 
be attributed to high concentration of 
magnetite gneiss in Wase and part of 
Pankshin area as indicated in the geological 
map (Fig. 2). The thorium and uranium 
concentration are well pronounced from 
south-western to the east-central region. This 
higher value of both thorium and uranium 
concentrations could be as a result of shale, 
sandstone and limestone. The uranium and 
thorium concentration shows an 
approximately linear relationship with heat 
flow anomaly both in trend and location, 
thus, they are great contributor to the high 
heat flow value obtained in Ibi and Kwalla 
areas of the study area. 
 
3-6-5. Radiogenic Heat Production (RHP) 
The potassium, thorium and uranium content 
maps of the study area were tied alongside 

with the Total Magnetic Intensity map. Five 
profiles (Fig. 13) running SW-NE with the 
exception of profile 5, which runs NW-SE. 
Average concentration of each isotope along 
each profile were computed. 
The following eight rock units: Alluvium, 
Eze Aku Formation, Awgu Ndeaboh 
Formation, Asu River Group, pan Africa 
Younger granitoids, pan Africa Older 
granitoids, magmatite gneiss, basalt were 
identified in the geological map (Fig. 2) of 
the area. Their average specific gravity or 
density alongside with average concentration 
of each isotope along each profile were 
applied for further calculation of the 
radiogenic heat  production. RHP (Table 2) 
values for each profile were calculated based 
on Equation (10) with an average value of 
2.2 μW/m3. This value is greater than the 
average heat production of the Precambrian 
shield, 0.77 ± 0.08 μWm−3 given by Jaupart 
and Mareschal (2003). Although they 
indicated that on a local scale, the variation 
from their value could be significant. In the 
present study, the difference in the area RHP 
may be attributed to the high radioelement 
contents found in the area. 
From the result (Table 2), it shows that 
lowest average RHP were obtained in 
profiles 2 and 3 that majorly run through the 
region with high magnetic signature (Fig. 1) 
and low heat flow (Fig. 13) while profiles 1 
and 4 run through the region with low 
magnetic signatures (Fig. 1) and where the 
heat flow (Fig. 13) values are highest.   

 
Table 2. Summary of the result for radioactive heat analysis. 

Isotopes CK (ppm) CTh (ppm) CTh (ppm) RHP (μW/m3) 

Profile1 3.83 19.68 3.81 2.53 

Profile 2 2.98 15.27 3.55 1.58 

Profile 3 0.73 14.80 4.38 2.08 

Profile 4 0.86 17.20 4.22 2.21 

Profile 5 1.66 17.13 3.94 2.20 
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