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Abstract  
A new approach with the ability to use the multiple observations based on the least square 
approach has been proposed for initial orbit determination. This approach considers the Earth’s 
Oblateness by using the developed Lagrange coefficients. The efficiency of the proposed method 
has been tested in two scenarios. The first scenario is to use the simulated and the second one is to 
utilize the real angle-only observations for the GRACE-like and GPS-like satellites. Under the first 
scenario, the ground-based observations are produced using the reduced-dynamic orbit generated 
by GFZ. Then, various error levels were added to the produced azimuth and elevation 
observations. The results show that considering the Earth’s oblateness could improve the accuracy 
of the initial orbit determination by six times for a GRACE-like satellite, and by 60 times for a 
GPS-like satellite. Afterward, under the second scenario, the real observations of the SLR station 
were used. In view of increasing in the number of observation tests, by increasing the numbers of 
the observations from 3 to 15, the accuracy of initial orbit determination was improved from 1496 
to 8 m using the SLR data for the GRACE-A satellite. 
 
Keywords: Initial Orbit Determination, Ground-based observations, Celestial Mechanics, Least 

Square Approach. 
 
1. Introduction 
Traditionally, Initial Orbit Determination 
(IOD) has been used for the planets and 
asteroids orbit determination in celestial 
mechanics. In the early years, the planet orbit 
was determined using the minimum needed 
observations made at ground-track stations. 
The initial orbit determination means the 
process of estimating Keplerian elements of 
planets, asteroids, satellites, debris, etc. using 
the ground-based observations (Montenbruck 
and Gill, 2000). The azimuth and elevation of 
a celestial target at separated times have 
traditionally been observed as ground-based 
observations. Then, the angle-only methods 
have been regarded as a backbone of the 
initial orbit determination from the past up to 
now, not only for planets, asteroids and 
debris, but also for satellites. Nowadays 
although, Global Navigation Satellite 
Systems (GNSS) play a key role in the 
precise orbit determination of satellites (Cerri 
et al., 2010; Jäggi et al., 2007; Van 
Helleputte and Visser, 2008), it is too 
difficult to ignore the ground-based methods 
especially the optical ones. The major cause 

of this fact is the passive nature of the angle-
only methods. The advantage of the angle-
only methods could be very vital for the orbit 
determination of the unknown or newly 
launched satellites besides debris orbit 
determination and space surveys (Milani et 
al., 2008).  
After Tycho Brahe’s attempts to develop 
superior observational techniques to study 
celestial objects (McCutcheon and 
McCutcheon, 2005), the first method of 
finding the orbit of a celestial body from 
three observations was devised by Newton 
which was given in the Principia in 1678 
(Bate et al., 2013). The fundamental works 
on the initial orbit determination methods 
were published by Lagrange in 1778 and 
others were published as: Vallado (2001), 
Laplace (1780) and Gauss (2004). Gauss’s 
method is a simple method which uses the 
right ascension and declination at three 
observation times to determine natural and 
artificial celestial bodies (Vallado, 2001). 
The Gauss exact method uses the exact 
functions of the Lagrange coefficients (f and 
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g) instead of a truncated series form of the f 
and g functions in an iterative algorithm 
(Curtis, 2005). Escobal (1965) developed 
another method named Double-R, a newer 
method presented by Gooding (1996) that 
could be classified as the angle-only method 
for IOD using the angle-only observations. 
These methods have been reviewed and 
compared by some authors (Celletti and 
Pinzari, 2006; Gronchi, 2009; Merton, 1925; 
Milani and Gronchi, 2010; Taff, 1984). 
In addition to classical efforts for initial orbit 
determinations, some literatures have been 
published on this issue. A theoretical and 
numerical comparison was made between 
different procedures by (Celletti and Pinzari, 
2005). Farnocchia et al., (2010) proposed two 
algorithms for debris and common orbits to 
provide a full preliminary orbit of an Earth-
orbiting object with a number of observations 
lower than the classical methods. Some 
literatures have focused on the definition of 
an orbit determination of space debris and the 
related admissible region (Farnocchia et al., 
2010; Tommei, et al., 2007; Doscher, 2018). 
The initial asteroid orbits were determined by 
the least squares adjustment of an arbitrary 
number (N) of optical and radar observations 
by Kristensen (2007). Following that, a few 
articles mentioned the IOD method using the 
multiple data (Karimi and Mortari, 2011, 
2013; Kristensen, 2009). Hu et al. (2019) 
investigated the use of space-based tracking 
data to determine the initial orbit of low-
Earth orbit target satellites. 
Although extensive research has been carried 
out on the initial orbit determination using 
different observations, almost all of the 
previously mentioned methods suffer from 
some serious drawbacks. The classic IOD 
methods are highly dependent on the type of 
observations, and the method should be 
different when other types of observations 
are measured. Another problem with these 
approaches is that they fail to take further 
observations into account. As an example, 
three sets of observed azimuths and 
elevations are used to solve IOD in the angle-
only approach and more observations are 
unusable. Due to further limitations, such 
explanations tend to overlook the fact that the 
satellites are affected by perturbing forces. 
The main hypothesis about almost all of them 
is that only the force acting on a satellite is 

central force, i.e. Keplerian motion. Although 
the hypothesis of the Keplerian motion could 
be sufficient for planets and asteroids IOD 
because they are considerably high orbiter, it 
could not be acceptable for satellites, 
especially LEO ones.  
The analysis undertaken in this paper 
attempts to bridge these gaps in the literature 
by proposing a new algorithm for IOD. In 
this paper, it is tried to present a 
methodology based on Least Squares (LS) 
estimation for Initial Orbit Determination. 
The proposed method is not limited in using 
more observations. In addition, in order to 
increase the accuracy of IOD, the Earth 
oblateness is considered. For this propose, 
the developed Lagrange coefficients were 
used in IOD. The Lagrange coefficients were 
developed by Lin and Xin (2003) by taking 
into account Earth’s oblateness and it was 
continued by Sharifi and Seif (2011). The 
proposed method is flexible and practical. It 
is flexible because the existing knowledge of 
LS theory can readily be applied in IOD 
problems and also it can be utilized for a 
variety of applications in this field. 
Moreover, it is practical because it is a 
general methodology that can easily be used 
in IOD from not only angles-only 
observations, but also range, range-rate, 
Doppler, etc., measurements. However, in 
this paper, as an example and a proof-of-
concept, this methodology is applied to 
angle-only measurements. The latter 
characteristic of the presented methodology 
makes it a viable alternative to conventional 
methods that are not usually able to deal with 
all data types in a unified way. 
Section 2 begins by laying out the theoretical 
dimensions of the research, and the 
formulation of the new proposed method is 
described in more details. In the following 
section, the proposed method has been 
validated by two scenarios. The first one is to 
do with the use of the simulated observations 
for IOD and the second one deals with the 
real observations obtained from Satellite 
Laser Ranging (SLR) stations. 
 
2. Mathematical modeling of the multi 
observations  
In this paper, it is hypothesized that the multi 
observations measured from a ground station 
can be used to solve IOD problem. The 
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authors have proposed a new method that is 
independent of the number of observations. It 
could be independent of the type of the 
observations (range, range rate, Doppler 
shift, etc.) too. In contrast to the classical 
methods, which are carried out in the central 
field, the Earth’s oblateness has been 
considered in the new proposed method.  
In our proposed method, 2 1N n   sets of 
the angle-only observations are used to 
compute the best estimation of the position 
and velocity vector at the middle point nt . 

For this purpose, at first, the observation 
vector should be formulated as a function of 
the position and velocity vectors (state 

vector) at nt , nr and nr .  

( , )n nl f r r                                              (1) 

Moreover, the state vector of the target at the 
middle point is directly inestimable due to 
the nonlinearity of the system of equations. 
Then, these equations should be linearized 
and the problem should be solved using an 
iterative scheme. The linearization has been 
carried out around the initial value of the 
position and velocity vectors at nt . Assume 

the sought-after correction is so small that the 
linearization can yield the accurate 
approximation of the equations. The 
linearized form of Eq. (1) could be computed 
from: 

0
0 0

( , )0[ , ]

f r rn nl f r rn n
r r r rn n n n


  

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         


  

     (2) 

The solution process is started with an initial 
guess of the position and velocity vector. 
Numerically, the problem can be expressed 
as an optimization problem. The aim is to 
find the correction to the initial state vector in 
a way that the deviation of the computed 
azimuth and elevation using the estimated 
position vectors of space target with respect 
to given sets of the angle-only observations is 
minimized. 
The Eq. (2) is equivalent to: 

min

n

n

r
d A d

r

d




  
   

  
 


                           (3) 

with the misfit vector d , d  the norm  

of the misfit vector, the design matrix A  
and the observation misclosure vector 

0
i idl l l    . 

Applying the method of least squares yields: 

1ˆ ( )T Tds A P A A P dl                          (4)  

where P is the weight matrix of the 
observations. For the ease of implementation, 
it is the set to be equal to the identity matrix. 
The procedure has schematically been 
summarized in Figure 1. 
Based on the procedure presented in Figure 
1, at first, the initial estimate of the position 
vector at the middle point was obtained  
by using the exact Gauss method.  
The observation sets at the first, middle and 
final points were selected for the computation 
of the position vector of the target at the 

middle point 0
nr because of the maximum 

stability. The initial estimate of the velocity 

vector at the middle point 0
nr was computed 

using Laplace method. The initial value 
should iteratively be improved so that the 
computed azimuth and elevation can 
optimally be matched to the observed ones at 
every point. For evaluating computed 
observations, the position vectors of the 
target at 1 2 2 1, ,..., nt t t   are required. 

However, the initial guess of  
the position and velocity vector has  
been carried out only for the middle  
point. Then, a propagator is necessary to 
bridge the gap. The initial guess of the state 

vector at the middle point, 0
nr  and 0

nr , could 
be propagated to other points using 
generalized Lagrange coefficients in the J2 
field, the gravity field of the Earth by 
considering the Earth’s oblateness (Sharifi 
and Seif, 2011):  

( ) ( ) ( ) ( )i n ni n i nr F t r t G t r t                 (5) 

where ܨ(ݐ௜)	and	ܩ(ݐ௜) are Lagrange 
matrices.  
Taylor expansion coefficients were derived 
for a J2 field by Sharifi and Seif (2011). They 
are presented in Appendix A, too. 
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By the known position vector of the ground 
station and the initial value of the satellite 
position vector at it , the computed 

observations can be obtained via: 
 

0
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where iR  is the position vector of the  

ground station. The Jacobian Matrix J  is 
given by:  
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where ( )T t is the transformation matrix that 
transforms the position vector from the 
Earth-centered Inertial (ECI) into the Earth-
centered Earth-fix (ECEF). For more details 
about transformation matrix, see McCarthy 
and Petit (2003). 
To complete the computation procedure,  
the design matrix should be calculated.  

The design matrix A is expressed as a 
product of the partial derivative using the 
chain rule as:  
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The partial derivatives of the observations 
(Azimuth and Elevation) with respect to the 
state vector are: 
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where  ,i i il A z El  is the ground-based 

observations, the azimuth, and elevation, 
measured from the ground station at it , 

ECI

i
  is the measured line-of-sight vector in 

the geocentric system that could be obtained 
via: 

( ) '* *
ECI ENZ

T t Jii i                           (11) 

where 
ENZ

i
  is the measured line-of-sight in 

the topocentric system.  
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The partial derivatives of the observations 

with respect to 
ENZ are: 
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For more explanation, the error at the middle 
points (plotted in Figure 8) is listed in Table 
2. For this test, the ground-based 
observations collected in the Matera station 
are used. As expected, the more the 
observations, the more accurate the initial 
orbit. The 1496.6 m of the initial point error 
is reduced to 7.5 m by increasing the number 
of the observations from 3 to 15. 
 
4. Conclusions 
The present study was designed to propose a 
new approach to the issue of the initial orbit 
determination based on the least square 
method. In addition to the Earth’s oblateness 
consideration in the initial orbit 
determination as the most important 
perturbing acceleration, the proposed method 
is not limited in using more observations. In 
this paper, these findings suggest that 
considering the Earth’s oblateness will be 
vital if the accurate observations are used, 
e.g. observations collected in the SLR 
stations. The Earth’s oblateness consideration 
could improve the IOD accuracy six times 
for the LEO satellite (with short arc 
observations) and about sixty times for a 
MEO satellite (with long arc observations). 
Increasing the accuracy could be continued 
by using more observations. The accuracy of 
IOD was improved from 1496.6 m to 7.5 m 
by increasing the number of observations 
from 3 to 15, in the case of the ground-based 
observations of GRACE A satellite collected 
in the Matera station. It could be 
recommended that further research be 
undertaken with more focus on using other 
types of observation. 
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Appendix 
 
The Lagrange matrices have been formulated as: 
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The polynomial expressions for the coefficients were given using Taylor series expansion around 
the initial time 0t . 
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Taylor expansion derived for a J2 field is presented in Table 3. As shown in Table 3, the coefficient 
( )

3
nf and ( )

3
ng  contain additional terms due to the non sphericity of the attracting force (Sharifi and 

Seif, 2011).  
 

Table 3. Taylor expansion coefficients in J2 field. 
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In Table 4, ( )
_

i
kepf  and ( )

_
i
kepg  are the terms of the Lagrange coefficients in central field. 

 

Table 4. Lagrange coefficients in central field. 

n 
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_
n
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_
n
kepg  
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1 0 1 
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Appendix 
 
 
The scalars 

2Ja , 
2Je and their derivatives are defined as: 
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where R  is the Earth’s radius and, J2 is the second zonal harmonic coefficients. 
 
 
 
 


