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Abstract

A new approach with the ability to use the multiple observations based on the least square
approach has been proposed for initial orbit determination. This approach considers the Earth’s
Oblateness by using the developed Lagrange coefficients. The efficiency of the proposed method
has been tested in two scenarios. The first scenario is to use the simulated and the second one is to
utilize the real angle-only observations for the GRACE-like and GPS-like satellites. Under the first
scenario, the ground-based observations are produced using the reduced-dynamic orbit generated
by GFZ. Then, various error levels were added to the produced azimuth and elevation
observations. The results show that considering the Earth’s oblateness could improve the accuracy
of the initial orbit determination by six times for a GRACE-like satellite, and by 60 times for a
GPS-like satellite. Afterward, under the second scenario, the real observations of the SLR station
were used. In view of increasing in the number of observation tests, by increasing the numbers of
the observations from 3 to 15, the accuracy of initial orbit determination was improved from 1496
to 8 m using the SLR data for the GRACE-A satellite.

Keywords: Initial Orbit Determination, Ground-based observations, Celestial Mechanics, Least

Square Approach.

1. Introduction

Traditionally, Initial Orbit Determination
(IOD) has been used for the planets and
asteroids orbit determination in celestial
mechanics. In the early years, the planet orbit
was determined using the minimum needed
observations made at ground-track stations.
The initial orbit determination means the
process of estimating Keplerian elements of
planets, asteroids, satellites, debris, etc. using
the ground-based observations (Montenbruck
and Gill, 2000). The azimuth and elevation of
a celestial target at separated times have
traditionally been observed as ground-based
observations. Then, the angle-only methods
have been regarded as a backbone of the
initial orbit determination from the past up to
now, not only for planets, asteroids and
debris, but also for satellites. Nowadays
although, Global Navigation Satellite
Systems (GNSS) play a key role in the
precise orbit determination of satellites (Cerri
et al., 2010; Jaggi et al, 2007; Van
Helleputte and Visser, 2008), it is too
difficult to ignore the ground-based methods
especially the optical ones. The major cause

of this fact is the passive nature of the angle-
only methods. The advantage of the angle-
only methods could be very vital for the orbit
determination of the unknown or newly
launched satellites besides debris orbit
determination and space surveys (Milani et
al., 2008).

After Tycho Brahe’s attempts to develop
superior observational techniques to study
celestial objects (McCutcheon and
McCutcheon, 2005), the first method of
finding the orbit of a celestial body from
three observations was devised by Newton
which was given in the Principia in 1678
(Bate et al., 2013). The fundamental works
on the initial orbit determination methods
were published by Lagrange in 1778 and
others were published as: Vallado (2001),
Laplace (1780) and Gauss (2004). Gauss’s
method is a simple method which uses the
right ascension and declination at three
observation times to determine natural and
artificial celestial bodies (Vallado, 2001).
The Gauss exact method uses the exact
functions of the Lagrange coefficients (f and
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g) instead of a truncated series form of the f
and g functions in an iterative algorithm
(Curtis, 2005). Escobal (1965) developed
another method named Double-R, a newer
method presented by Gooding (1996) that
could be classified as the angle-only method
for IOD using the angle-only observations.
These methods have been reviewed and
compared by some authors (Celletti and
Pinzari, 2006; Gronchi, 2009; Merton, 1925;
Milani and Gronchi, 2010; Taff, 1984).

In addition to classical efforts for initial orbit
determinations, some literatures have been
published on this issue. A theoretical and
numerical comparison was made between
different procedures by (Celletti and Pinzari,
2005). Farnocchia et al., (2010) proposed two
algorithms for debris and common orbits to
provide a full preliminary orbit of an Earth-
orbiting object with a number of observations
lower than the classical methods. Some
literatures have focused on the definition of
an orbit determination of space debris and the
related admissible region (Farnocchia et al.,
2010; Tommei, et al., 2007; Doscher, 2018).
The initial asteroid orbits were determined by
the least squares adjustment of an arbitrary
number (N) of optical and radar observations
by Kristensen (2007). Following that, a few
articles mentioned the IOD method using the
multiple data (Karimi and Mortari, 2011,
2013; Kiristensen, 2009). Hu et al. (2019)
investigated the use of space-based tracking
data to determine the initial orbit of low-
Earth orbit target satellites.

Although extensive research has been carried
out on the initial orbit determination using
different observations, almost all of the
previously mentioned methods suffer from
some serious drawbacks. The classic 10D
methods are highly dependent on the type of
observations, and the method should be
different when other types of observations
are measured. Another problem with these
approaches is that they fail to take further
observations into account. As an example,
three sets of observed azimuths and
elevations are used to solve IOD in the angle-
only approach and more observations are
unusable. Due to further limitations, such
explanations tend to overlook the fact that the
satellites are affected by perturbing forces.
The main hypothesis about almost all of them
is that only the force acting on a satellite is

central force, i.e. Keplerian motion. Although
the hypothesis of the Keplerian motion could
be sufficient for planets and asteroids IOD
because they are considerably high orbiter, it
could not be acceptable for satellites,
especially LEO ones.

The analysis undertaken in this paper
attempts to bridge these gaps in the literature
by proposing a new algorithm for IOD. In
this paper, it is tried to present a
methodology based on Least Squares (LS)
estimation for Initial Orbit Determination.
The proposed method is not limited in using
more observations. In addition, in order to
increase the accuracy of IOD, the Earth
oblateness is considered. For this propose,
the developed Lagrange coefficients were
used in IOD. The Lagrange coefficients were
developed by Lin and Xin (2003) by taking
into account Earth’s oblateness and it was
continued by Sharifi and Seif (2011). The
proposed method is flexible and practical. It
is flexible because the existing knowledge of
LS theory can readily be applied in IOD
problems and also it can be utilized for a
variety of applications in this field.
Moreover, it is practical because it is a
general methodology that can easily be used
in IOD from not only angles-only
observations, but also range, range-rate,
Doppler, etc., measurements. However, in
this paper, as an example and a proof-of-
concept, this methodology is applied to
angle-only = measurements. The latter
characteristic of the presented methodology
makes it a viable alternative to conventional
methods that are not usually able to deal with
all data types in a unified way.

Section 2 begins by laying out the theoretical
dimensions of the research, and the
formulation of the new proposed method is
described in more details. In the following
section, the proposed method has been
validated by two scenarios. The first one is to
do with the use of the simulated observations
for IOD and the second one deals with the
real observations obtained from Satellite
Laser Ranging (SLR) stations.

2. Mathematical modeling of the multi
observations

In this paper, it is hypothesized that the multi
observations measured from a ground station
can be used to solve IOD problem. The
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authors have proposed a new method that is
independent of the number of observations. It
could be independent of the type of the
observations (range, range rate, Doppler
shift, etc.) too. In contrast to the classical
methods, which are carried out in the central
field, the Earth’s oblateness has been
considered in the new proposed method.

In our proposed method, N =2n+1 sets of
the angle-only observations are used to
compute the best estimation of the position

and velocity vector at the middle point .

For this purpose, at first, the observation
vector should be formulated as a function of
the position and velocity vectors (state

vector) at t ,r  andr .

L=f(r,.r,) (D

Moreover, the state vector of the target at the
middle point is directly inestimable due to
the nonlinearity of the system of equations.
Then, these equations should be linearized
and the problem should be solved using an
iterative scheme. The linearization has been
carried out around the initial value of the

position and velocity vectors at t . Assume

the sought-after correction is so small that the
linearization can yield the accurate
approximation of the equations. The
linearized form of Eq. (1) could be computed
from:

of n 52 0.0
l=—=1]""|- oll" frn.fn) (@)

The solution process is started with an initial
guess of the position and velocity vector.
Numerically, the problem can be expressed
as an optimization problem. The aim is to
find the correction to the initial state vector in
a way that the deviation of the computed
azimuth and elevation using the estimated
position vectors of space target with respect
to given sets of the angle-only observations is
minimized.

The Eq. (2) is equivalent to:

Q=AFL.”}—M
or, 3)

||(1 || —  min

with the misfit vector d, "(1 || the norm

of the misfit vector, the design matrix A
and the observation misclosure vector

d=[1,-17].

Applying the method of least squares yields:
dS=(A"PA)"ATP dl @)

where P is the weight matrix of the
observations. For the ease of implementation,
it is the set to be equal to the identity matrix.
The procedure has schematically been
summarized in Figure 1.

Based on the procedure presented in Figure
1, at first, the initial estimate of the position
vector at the middle point was obtained
by using the exact Gauss method.
The observation sets at the first, middle and
final points were selected for the computation
of the position vector of the target at the

middle point r| because of the maximum
stability. The initial estimate of the velocity
vector at the middle point [2 was computed

using Laplace method. The initial value
should iteratively be improved so that the
computed azimuth and elevation can
optimally be matched to the observed ones at
every point. For evaluating computed
observations, the position vectors of the

target at 1.,t,,..0,,,, are required.

However, the initial guess of
the position and velocity vector has
been carried out only for the middle
point. Then, a propagator is necessary to
bridge the gap. The initial guess of the state

vector at the middle point, r| and r}, could

be propagated to other points using
generalized Lagrange coefficients in the J2
field, the gravity field of the Earth by
considering the Earth’s oblateness (Sharifi
and Seif, 2011):

r=FE)r,¢)+G)r,,) Q)

where  F(t;)and G(t;) are Lagrange
matrices.

Taylor expansion coefficients were derived
for a J2 field by Sharifi and Seif (2011). They
are presented in Appendix A, too.
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Figure 1. The algorithm of proposed method.
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By the known position vector of the ground
station and the initial value of the satellite

position vector at t;, the computed

observations can be obtained via:

0
0 tan ! —(I)E)
0| # pg
= - 0 -
El: _
! sin 1( rz )
02 02 02
PE tPN TPz i
(6)
where
0
PE ’ .
pU | 23T (1 -R), i=12,..2n+1
0
Pz i
(7)

where R, is the position vector of the

ground station. The Jacobian Matrix J is
given by:

—sin(A) —sin(¢)cos(1) cos(g)cos(A)
J =] cos(1) —sin(¢)sin(A) cos(¢@)sin(A)
0 cos(¢) sin(¢)
®

where T (t)is the transformation matrix that

transforms the position vector from the
Earth-centered Inertial (ECI) into the Earth-
centered Earth-fix (ECEF). For more details
about transformation matrix, see McCarthy
and Petit (2003).

To complete the computation procedure,
the design matrix should be calculated.

The design matrix Ais expressed as a

product of the partial derivative using the
chain rule as:

ol
ofrn.tn]
alp
o[rn.tn]

1>
I

)
oln

o[rn.tn]

lont1

Lolrn-ta] bnss

The partial derivatives of the observations
(Azimuth and Elevation) with respect to the
state vector are:

ol ol orj
5[[na['n] Orp drp
ENZ ECI
olj 9pp  0p or;

ENZ ECI . K
ap; op; orj a[lnaln]

i=1,2,...2n+1 (10)

where |, =[Az;,El, ] is the ground-based
observations, the azimuth, and elevation,

measured from the ground station at t,,

,OiECI is the measured line-of-sight vector in

the geocentric system that could be obtained

via:
EC ENZ

|
Pj =I(ti)'*£*gi (11)
where piENZ is the measured line-of-sight in

the topocentric system.

ENZ PE cos(El; )siz(Az)
Pj =l pN | = A | cos( El;)cos(Az) | (12)
Pz |; sin(El;)

The partial derivatives of the observations

. ENZ
with respectto p~  are:

2, 2 2, 2
o | PN TFE PN T PE
ENZ ~ 2_ 2 (13)
op; _ PEPZ _ PNPz P —Pz
22 2 22 2 2[2 2
| PP Py PP =Pz PP =Pz |
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It is obvious from the fundamental equation
of IOD from the ground-based observation

ECI

r, =R, +,0_ECI that —= is equal to
- or;

identify matrix. ————— is half part of the
or,.r,]

transition matrix between t; and t, defined

oA _
a[ln,fn]
I 1 -PE
o2 A s 2 0
e B
PN PN
2
B PEPZ B PNPZ P —Pz
3 2 3 2 3 P 2
L e A 5
P P P
3. Numerical Analysis
In this section, the efficiency

and improvement of the proposed method
have been compared with the exact Gauss
method. The comparison has been carried
out in two scenarios. The first scenario
deals with IOD wusing the simulated
observation, and the second scenario uses
the real observations obtained from SLR
stations. The precise orbit of the GRACE and
GPS satellites has been considered as a
true orbit to check the obtained results in
the simulation scenario. The accuracy of
the precise orbit is claimed to be at
the centimeter level. In the simulation
procedure, the ground-based observations of
the satellite (Azimuth, Elevation, and Range)
is produced from the known position vector
of the ground station and satellite. Various
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as:
or, or,

Ot )= or, aL:n :[911 912}
or, or; D, P,
or, or,

(14)

Finally, Eq. (15) could be summarized as:

(15)
*T(t)*d *[@1; @15]

error levels were added to the produced
azimuth and elevation observations for
simulating a real situation. The satellite
position vector was estimated using the
Gauss exact and proposed method and
compared with the true orbit. In the second
scenario, the satellite position vector was
estimated using the real angle-only
observations. Then, the observed range was
compared with the estimated range for
checking the efficiency of the method.
Furthermore, the improvements given from
considering the J2 effect and using multi-
observations have been assessed in two
scenarios. As said before, in the first
scenario, the simulated observations have
been used for estimating satellite state vector.
The algorithm of the procedure has been
shown in Figure 2.

True Orbit

Simulated
Observations

i

Checking
estimated

position with

Estimated
satellite position

Figure 2. The procedure of the IOD using simulated observations.
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Based on the first scenario described
in Figure 2, the precise orbit of the GRACE
satellite has been converted to ground-based
observations. After adding the error to
the simulated observation at different levels,
the IOD process is carried out using the
proposed method. Figure 3 describes the
error of the proposed method versus the
Gauss approach.

As shown in Figure 3, the proposed method
will be ten times more accurate than the
Gauss method for a GRACE-like satellite

10*

should the accurate observations be used. For
inaccurate observations (the error levels
larger than 107), there is no significant
difference between the proposed and Gauss
methods. The main reason is that the
inaccurate observations do not need a more
perfect model that considering the Earth
oblateness responsible for the initial orbit
improvement obtained in the proposed
method. This comparison was repeated for an
MEO satellite, GPS satellite, and the result
was presented in Figure 4.

7| == Gauss Method (Position)
Proposed Method (Position)
-| === Gauss Method (Velocity)
Proposed Method (Velocity)

10’

10°
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107 10 10°
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10° 10 10

Error in Angles (degree)

Figure 3. The position (solid lines) and velocity (dashed lines) errors of Gauss and proposed methods on account of
using the simulated noisy observations for GRACE satellite.
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Figure 4. The position (solid lines) and velocity (dashed lines) errors of Gauss and proposed methods on account of
using the simulated noisy observations for a GPS satellite.
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As shown in Figure 4, the improvement of
the proposed method for the MEO satellite is
greater than that of the LEO satellite because
the time interval between angle observations
could be chosen larger. The larger the time
interval is, the greater the impact of the Earth
oblateness will be. The proposed method is
about sixty times more accurate than the
Gauss method for a GPS-like satellite if the
accurate observations would be used. Like
the LEO satellite case, for inaccurate
observations (the error levels larger than
107), there is no significant difference
between the proposed and Gauss method.

In addition to the position and velocity error,
we are interested in assessing the error of
Keplerian elements. Figure 5 shows the
errors of the Keplerian elements (Semi-major
Axis, Eccentricity, Inclination, Right
Ascension of Ascending Node (RAAN) and
Arguments of Latitude) for an MEO-like
satellite.

So far, the proposed method has been
validated for the least observations needed
for IOD. Afterward, the ability of the
proposed method to add more observations

Semi-major axis Error

Error {(m)

Error (deg)

107

Error

Error (deg)
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(more than three sets of azimuth and
elevation) was tested. Obviously by adding
further observations, the accuracy of the
initial orbit determination could be increased.
However, the classic method, e.g. the Gauss
method, could not use more observations,
and it is one of the main disadvantages of
these approaches. By proposing a different
algorithm, the proposed method attempts to
use more observations made in the ground
station. The orbit improvement using multi-
observations has been described in Figure 6
for the simulated observation. These
observations were produced from the real
orbit of the GPS-02 satellite determined by
GFZ institute. The simulated observations
were noised by adding different error levels.
The maximum number of observations used
in this scenario was 15 and the time interval
between two consecutive sets of observations
was 5 min. In the procedure of increasing the
number of observations, at each step, two
sets of observations in both sides of the
middle point were added to the IOD process
in addition to the observation set at the
middle point.

Eccentricity Error

10" 10* 10° 10 10"

Right Ascention of Ascending node Error

10"

10"_, - - - s
10° 10 10° 10° 10

Argument of Latitude Errors

—#— Gauss Method
Proposed Method | ..

Error (deg)

10°

10° 10"

Error in Angles (degree)

Figure 5. The error in Keplerian elements obtained from the Gauss and proposed methods on account of using the

simulated noisy observations for a GPS satellite.
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Figure 6. The IOD improvement using multi-observations for the GPS-02 satellite (simulated angles from real orbit in
different levels of added Error of observations).

The details of Figure 6 have been represented

in Table 1.

Table 1. The error at the initial point for the exact Gauss and proposed method for simulated observations with different

level of noise (Case: GPS-02 satellite)

Num. of Level of error added to simulated angles
Method . . ; . 5
Observations| Error free | 10° 107 10 107
Gauss Exact
Mothod 3 7774 | 8.0931 | 10.956 | 39.5021 |316.5932
3 0.1044 | 04226 | 3.2858 | 31.8302 |308.9092
5 0.0443 | 0.1624 | 12252 | 11.8500 |117.7815
The Error in the 7 0.0158 | 0.0627 | 0.7693 | 7.8346 | 78.4101
iddle point (K.
middle point (Km) |~ Proposed 9 0.0121 | 00474 | 05824 | 59323 | 59.3899
Method
11 0.0065 | 0.0404 | 0.4625 | 4.6825 | 46.8532
13 0.0064 | 0.0311 | 03690 | 3.7470 | 37.5055
15 0.0038 | 0.0264 | 0.2984 | 3.0183 | 30.1998

As shown in Figure 6 and Table 1,
the proposed method could improve
the accuracy of IOD by about 70 times with
respect to the exact Gauss in the error-free
mode for a GPS-like satellite. Increasing
accuracy could be continued by entering
more observations. In the error-free mode,
the 7.77 km of initial point error using the
exact Gauss method is reduced to 3 m by
using 15 observations. However, in more
noised-polluted cases, there will not be any
meaningful difference between the proposed
and exact Gauss methods, because inaccurate
observations do not need a more perfect
model. In spite of this, entering more
observations could obviously improve 10D
even by highly noised observations.

Following the first scenario, the proposed
method was validated by the real ground-
track observations.

Under

the

second

S

cenario,

the real

observations recorded in SLR stations were
used for the validation of the proposed
method. In
improvement

the
of

second
the

scenario, the

Earth oblateness
consideration and the process of adding more
observations were tested by the real data. For
this purpose, at first, the accurate angles
(azimuth and
satellite position estimation. Following that,
the estimated range obtained from IOD was
compared with the accurate observed range.
The algorithm of the procedure is shown in
Figure 7.

elevation) were used for
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Figure 7. 10D Error Analysis using SLR Observations.

In the satellite laser ranging (SLR), a global
network of the observation stations measures
the round-trip time of the flight of the ultra-
short pulses of light to satellites equipped
with retro reflectors. This provides the
instantaneous range measurements of the
millimeter level precision, which can be
accumulated to provide accurate
measurement of orbits and a host of
important scientific data.

The full-rate date of the SLR station,
Matera in Italy, is used for validation
of proposed method. The precision of
the Azimuth and Elevation angles
observed in the SLR station is about 0.1
milli-degree.

In Figure 7, the trend of improving the initial
orbit determination is presented. In this
figure, the error in the middle point is plotted
versus the number of observations.

1500 T T

qo0p ks aiinanans

F7011] AU S

Error in the middle point (m)

9
Num. of the observations

Figure 8. The IOD improvement using multi-observations for the GRACE A satellite (real observation recorded in

Matera SLR station).

Table 2. The IOD improvement using the multi-observations for the GRACE A satellite.

Number of
Observation sets

Error in the middle point (m)

3

1496.646

476.675

319.233

O | | W

143.784

130.193

41.375

7.567
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For more explanation, the error at the middle
points (plotted in Figure 8) is listed in Table
2. For this test, the ground-based
observations collected in the Matera station
are used. As expected, the more the
observations, the more accurate the initial
orbit. The 1496.6 m of the initial point error
is reduced to 7.5 m by increasing the number
of the observations from 3 to 15.

4. Conclusions

The present study was designed to propose a
new approach to the issue of the initial orbit
determination based on the least square
method. In addition to the Earth’s oblateness
consideration  in  the initial  orbit
determination as the most important
perturbing acceleration, the proposed method
is not limited in using more observations. In
this paper, these findings suggest that
considering the Earth’s oblateness will be
vital if the accurate observations are used,
e.g. observations collected in the SLR
stations. The Earth’s oblateness consideration
could improve the IOD accuracy six times
for the LEO satellite (with short arc
observations) and about sixty times for a
MEO satellite (with long arc observations).
Increasing the accuracy could be continued
by using more observations. The accuracy of
10D was improved from 1496.6 m to 7.5 m
by increasing the number of observations
from 3 to 15, in the case of the ground-based
observations of GRACE A satellite collected
in the Matera station. It could be
recommended that further research be
undertaken with more focus on using other
types of observation.
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Appendix

The Lagrange matrices have been formulated as:

f.t) 0
E(ti): 0 fz(ti)
0 0

0
0 |
fi)

Gt)=

9,(t)
0
0

0 0
g,t) 0
0 g;t)

(16)

The polynomial expressions for the coefficients were given using Taylor series expansion around

the initial time t,.

- 1 n n
fj(ti)zsz; ) o, G =)

n=0 .

=1 .
gj(ti)=2mg§ N, -t j=1,2,3

n=0 .

amn

Taylor expansion derived for a J2 field is presented in Table 3. As shown in Table 3, the coefficient

f3(”) and gS(") contain additional terms due to the non sphericity of the attracting force (Sharifi and

Seif, 2011).

Table 3. Taylor expansion coefficients in J2 field.

n f1<n) =f2<n) gf") _ g;") f}(m gg”)
0 1 0 1 0
1 0 1 0 1
2 f G +ay, 0 f @ +e, 0
3 g ©)
3) ; 2) f +e +e
3 f e T8, 0 e T, 1 3 9 3
fféép 4) 23 f [CONNPN 2 4 26
4 B s 0 e 29y, LV +€,-2me,, +e7, g9, +2¢;,
+4;,,—2m a;, +aj,
f (If)
_kep ) $) L ad® a ) 425
S 9% f, +e)) +46, (-m+a;) | 9,7 +3€;
5 +a;; +3mo a,, . 5 ]
+34,,+m a,, +a;, | +46, Bmo+4a, ) +2e, (-m+a, )
: 2 2 2 2
+a,,(-3m+4a,,)

In Table 4, f (Lép and g (ik)ep are the terms of the Lagrange coefficients in central field.

Table 4. Lagrange coefficients in central field.

n f 9%

0 1 0

1 0 1

2 -m 0

3 3mo —-m

1 -15me? +3me +m? 6mo

5 105mo” —o(45me +15m?) —45mo* +9me+m?
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Appendix

The scalars a , €y and their derivatives are defined as:

a, =m'(517-1)

8, =m'[50(1-7I Hy+101,1,]

a, =—-m'lliml Z4m=5g(71}=1)+101; +35m'c* (917 -1)-140m'cl 1, ]

agj’ =m'33mol  +(22ml, —=70¢l, +630m'c?’l, —140m'c)(l, —|,0)+5a(Mm+2¢&)(71 ] -1)
(&—207)(=1401,1, +705(91 } —=1)-175m"'c(41, 1, +91 1)

+201,(1, =7m'o)((-m+5m'l, =3m")-1,0)]

(18)
e, =-2m'
¢, =10m'c
: 2 , (19)
€, =-70m'c’ +10m'e

e =50m'c(7(¢—-207)+o(m+2¢))

Where
3J R?
m'=(22)GM —,
( 5 )G i
1,=2, (20)
r
p4
=

where R is the Earth’s radius and, J, is the second zonal harmonic coefficients.



