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Abstract

Radon measurement on the surface can represent the subsurface condition. The measured Radon in
geothermal field is caused by the source, which is usually a geothermal reservoir. This study did
the inversion process for determining the depth and value of Radon Source. Another fact, non-
uniqueness of the solution can produce a result with different model parameter combinations.
Hence, it can confuse the interpreter to determine the correct model. Based on this case, we
proposed an inversion scheme that can minimize the non-uniqueness effect in the Radon data
inversion. The scheme is started by Monte-Carlo inversion and finished by damped least-square.
Monte-Carlo inversion, as one of the global optimizations, produce an appropriate starting model
for the damped least squares. The damped least square method will finish the scheme fast. In order
to be sure with the result, the whole scheme is repeated 19 times. The relative RMS error for the
synthetic data is 0.07% to 0.32% to a depth difference of 7% from the synthetic model. With this
synthetic data inversion test, the inversion scheme was applied to the real data from the Rajabasa
Geothermal field. With this scheme, the section AA’ gives an error of 0.51% to 0.88% with a
depth of 712 m and section BB’ gives an error of 5.79% to 5.27% with a depth of 728 m. This

result is coherent with the magnetotelluric data in this area.
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1. Introduction

Radon is abundant in magmatic rock because
they contain Uranium-238 as Radon sources.
A Radon is a noble gas that dissolves
easily in the geothermal fluid. As magmatic
rock and geothermal fluid made contact
inside the reservoir, the geothermal fluid
will be containing a lot of Radon. Hence, it
is assumed that the geothermal reservoir
is the Radon source (Balcéazar et al., 2010).
Radon survey in the geothermal area
has been carried out by Haerudin et al.
(Haerudin et al,, 2013) in Rajabasa
Geothermal Field and by Haerudin et al.
(Haerudin et al., 2016) in the Way Ratai
Geothermal Field.

Moreover, the geothermal fluid consists of
Radium, which is the nearest Radon source.
Hence, Radon will always be produced in the
geothermal fluid while it migrates to the
surface. The migration follows a diffusion-
convection mechanism (Fleischer et al., 1980;
Tanner, 1980; lakovleva and Ryzhakova,

2003; Iskandar et al., 2005). The diffusion
process follows the Flick’s Law (Schroeder
et al.,, 1965; Mogro-Campero and Fleischer,
1977), which will reach only several meters
(Krister and Lennart, 1982). While the
significant process that makes Radon move
to the surface follow the Darcy’s Law of
convection. Because Radon migrates from
the reservoir in the geothermal fluid, the
existence of fault and fracture under the
surface becomes an essential factor for the
migration (Figure 1).

Radon inside the reservoir is assumed to have
starting concentration value as N. That value
will be reduced as it travels and decays then
becomes N,. While the Radon source (N) in
the reservoir cannot be measured yet, the
Radon value of the surface can be measured
by Radon detector. From the Radon on the
surface, we can backwardly determine the
value of the Radon source (N) by using the
inversion method.
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Figure 1. Tllustration of Radon migration in the subsurface (modified from (Balcézar et al., 2010)).

2. Forward Modeling

Inversion modeling is applied based on
numerical simulation of Radon concentration
distribution in the homogenous overburden
above an active fault zone (Liu et al., 2008).
This simulation is a development of an
analytic solution of a simple one-dimensional
geometry model (Soonawala and Telford,
2002). This analytic solution was produced
based on the Radon movement under the
overburden rock, which involves diffusion
and convection mechanism. The previous
modeling was based on migration simulation
of Radon in overburden rock with single
fracture and finite width (Abdoh and
Pilkington, 1989).

The general formula in this simulation is

Von Neumann
boundary

N

ay

expressed as:
©)

with

/. =Decay constant =2.1 x 10° /s

D* = Diffusivity = 0.005 cm?/s

v,= Convection velocity = 0.008 cm/s

N= Initial Radon concentration (calculated)
According to Equation (1), the numerical
solution is created by using the Gauss-Seidel
five point stencil of the finite difference
method. The boundary condition in this
formula follows the von Neumann boundary
condition (Figure 2). Besides that, at a depth
of y, the Radon value distribution is equal to
the Radon Source (V).

. Von Neumann
ty=0=0 boundary
{p’
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T” ox 5= 0

N = f(x,y = depth)

Figure 2. Finite difference calculation for the Radon simulation illustration.
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The first derivative formula can be
approximated by using finite difference as:

ON(x,y) N(x+Ax,y)—N(x—Ax,y)
ox 2Ax )

In discrete term, Equation (2) can be written
as:

ON,. N,

i i+,j

N

i-1,j

Ox Ax (3)

where 7 is the index for component x and j is
the index of component y. Similar to the
previous equation, the second derivative of
N(x,y) can be approximated by using finite
difference as:

82N(x,y) 5 N(x+Ax,y)—2N(x,y)+ N(x—Ax,y)

ax2 Ax2
“4)
In discrete term, Equation (4) is written as:
2
0 sz ~ ]vi+],j _2Ni,j +Ni—],j
ox’ Ax? (5)

From both equations above, we can substitute
them Equation (1) to become a discrete term
Nj=n (N + N+

(6)
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The calculation process 1is completed

iteratively, so we get a convergent N value
distribution, which represents the Radon
distribution inside the overburden rock. The
Radon value on the surface (Nt) is picked
inside the ground with a depth of 70 cm. The
Nt value of the simulation is used as data that
is compared with the real measured data on
the field.

3. Synthetic M odel

Following the explanation of forward
modeling before, we made a simulation of a
synthetic model with 2500 m length and
depth of 1000 m. Radon values of the
synthetic model is shown in Figure 3a with
10 segments of Radon source. By using that
model, we obtained subsurface Radon value
distribution (Figure 3b).
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Figure 1. a) Radon source synthetic model at a depth of 1000 m. b) Synthetic Radon distribution in the overburden.
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From that data, we selected data with a depth
of 70 cm under the surface as synthetic data
(Figure 4). From that figure, we can see that
the surface value (Vf) has a similar pattern
with the source (V). The synthetic data give
two maximum values of the curve, but with a
smaller value and narrower than the source. It
is happening because of the diffusion and
convection of the Radon gas from the source
to the surface.

Most of the geophysical methods have a
common problem when trying to solve the
inverse problem, which is non-uniqueness of
the solution (Zhdanov, 2002). A geophysics
data can be said inheriting non-unique
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solution because it can be formed from many
combinations of models. In this Radon
simulation case, it is known that the
simulation of the data can be produced from
different models and depth combination. In
the example of Figure 5, the model response
can be approximated with different depth of
500 m, 1500 m, and 2000 m and the
combination of 25 segments of Radon source.
This phenomenon can confuse the interpreter,
as we chose a bad starting model for the
inversion process. Hence, it is necessary to
do a step that can give good coarse guidance
for choosing the starting model in the
inversion process (Maiti et al., 2012).
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Figure 4. Radon synthetic data at a depth of 70 cm under the surface with a measurement length of 2500 m.
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Figure 5. Example of non-uniqueness effect in the Radon data. Different Radon synthetic model combinations can
produce similar Radon synthetic data. The models have a depth of 500 m, 1000 m, 1500 m, and 2000 m.
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4. Inversion Scheme

The inversion method is usually used for
determining the subsurface model or
parameter of the measured or observed data.
In this Radon method, the measured or
observed data is a data measured at a depth
of 70 cm under the surface, while the desired
model is the Radon distribution and depth of
the source in the subsurface. As explained
before, the non-uniqueness problem has to be
solved first, so that we can be more confident
with the inverted model. This problem is
widely known to be solved using inversion
based on global optimization such as Grid
search, Monte-Carlo, Simulated Annealing,
Genetic Algorithm and Particle Swarm
Optimization (Rubinstein, 1991;
Bhattacharya and Sen, 2003; Yogi and
Widodo, 2017).

Global optimization requires a lot of long-
time computation for obtaining a result with
a small error which is similar to the measured
data (Chunduru et al., 1997). In this research,
the inversion method based on global
optimization was used as a guidance
for determining the starting model that is
expected to reduce the non-uniqueness effect.
Therefore, for accelerating the calculation
process, the rough model from the global
optimization was inverted using the
least-square inversion method (Maiti et al.,
2012; Yogi and Wido, 2017). More
specifically, we used the damped least-square
method  using the  singular  value
decomposition method.

% Synthetic data
—— Average data

With that reason, an inversion process that
we chose based on the global optimization
was the simple method which quickly
determines the adequate starting model. The
resulted model from this step had an
unnecessarily small error, but had a
reasonable tendency where the inversion
model gathering was good enough. The grid
search method is the simplest method, but
with more than 10 inversion models, a longer
time is required to achieve a final model. The
next model that have relatively simple
computation is Monte-Carlo method. This
method will search the model dimension
randomly, so the calculation time was shorter
than the Grid search method.

Monte-Carlo method is a random model
searching method which gives a model that
tends to the minimum global and reduces
minimum non-uniqueness effect (Sen and
Stoffa, 2013). To get faster model searching,
we made a model searching range. We
started the model searching range made by
averaging the observed data by following the
inversion segments. In this case, there were
25 segments with 100 m length. From that
average data, the maximum range that was
double the average data and the minimum
range that was half of the average data were
chosen (Figure 6). From the previous
simulation, this range meets the characteristic
of the diffusion — convection mechanism of
Radon. The minimum range was made
purposely for accommodating the source
segments fluctuation.
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Figure 6. Searching range in the Monte Carlo inversion.
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On the other hand, for measuring how good a
calculated model is compared to the observed
data, we used relative root mean square error
(RRMSE) (Jupp and Vozoff, 1975). This
relative comparison can give satisfactory
result in comparing two different data for
every different data range. Given the
example, in Figure 7, the first case has a
maximum value about 1300 Bq/m’, while in
the second case, the maximum value is about
2700 Bg/m’. Both cases have a different
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relative RMS error of 1 %, but the RMS error
in the second case (18.7) is greater than the
RMS error for the first case (9.4). From that
example, we chose RRMSE for measuring
two data differences in the later study
because of its robustness.
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Figure 7. Two responses that have a similar relative root mean square error (RRMSE), but different root mean square
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From Monte-Carlo calculation, we got 1000
models with the RRMSE range of 6.55% to
52.84% (Figure 8a). In this study, we try to
apply two schemes of the final model, which
were the best model from the Monte-Carlo
calculation and the average model from 10%
smallest error model. From these schemes,
the first one gave a very fluctuating model,
with an error of 6.55% (Figure 8b). The
second one gave a model, which had a
similar pattern to the data, with an error of
4.12% (Figure 8c). From this result, we chose
the model of the second scheme as the
starting model for damped least-square
inversion (Figure 9).

Forward modeling equation in the previous
explanation (Equation 6) can be written in
matrix form as Equation (11). g represents
forward modeling function as in Equation (6),
d represents response or calculated data from
forward modeling process (Zhdanov, 2002).
The response or calculated data here have a
similar treatment to the real data, which is
picked from 70 cm beneath the surface.

d=g(m) (11)

where m is the model vector, which follows
the pattern bellow
m=[N,N,,...,N, ,d] (12)
N is the Radon source segment width and d is
the depth of the Radon source.

The damped least square algorithm in this
study based on singular value decomposition
that had been used in (Ekinci and Demirci,
2008) for DC resistivity method. We tried to
modify this inversion scheme, suited the
Radon method. The damped least square
equation is stated as:

Am=(ATA+¢’1)" AAd (13)

Am is an update model vector that has m
number segments model, Ad is a data
difference vector between observed data and
calculated data from forward modeling
process. This vector has n number of
elements following the number of the data. A
is a Jacobian matrix, | is an identity matrix,
and ¢ is a damping factor. The Jacobian
matrix is a matrix of differentiation forward

modeling over models which approximated
by the forward difference scheme in
Equations (14) and (15).

A= (14)
om,,

_ gn(mm +Amm)_ gn(mm)
Am,,

A

(15)

Jacobian matrix, A, has a dimension of »n xm,
where n and m are data number and model
parameter number, respectively. The matrix
A can be reformed into three different vectors
by using singular value decomposition (SVD)
method as:

A=UsV’” (16)

From the singular value decomposition
process, the U matrix (nxm) is a data
eigenvector, V (mxm) is a model parameter
eigenvector. S (mxm) is a diagonal matrix
with the value of 4;, 4,, ..., 4,, this value is
also called singular value of A matrix. The
correction value of the model parameter in
Equation (13) can be expressed again in the
new term as:

A

J
/1j2~+£2

T

Am =Vdiag u’ad (17)

In Equations (13) and (17), we can see that
there is a damping factor (¢). This damping
factor has a crucial role in regulating the
inversion process. The first function is to
prevent a matrix singular, which cannot be
inverted. The other is to control the
convergence speed of the inversion process
in Equation (17). We can choose two ways of
the damping factor value, which is large or
small value. Figure (10) shows the error
value that changes every iteration
for different choices of the damping factor.
When the damping factor is large, the
inversion process will be stable because the
correction of the model is small. However, it
will make the convergence obtained in longer
calculation. The other choice is a small
damping factor, where the model update is
big and the convergence is faster. However,
the inversion process cannot be stable.
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Determine the grid dimension and models range

Monte Carlo Inversion with 1000 models

The Monte Carlo final model become a starting model
in the least square inversion

Damped Least Square Inversion

Final Model

Figure 9. The purposed inversion scheme flow chart.
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Figure 10. RRMSE curve for every iteration with a different damping factor.

Following that case, the regulation is
made for determining the value of
the damping factor based on the sensitivity
of data over the model. The sensitivity
is represented in the Jacobian matrix and A
value at SVD. By using this regulation, at
the beginning of the inversion, the damping
factor will be large so that the inversion
will be stable. Along with the iteration,
the damping factor is reduced so that
the convergence is faster to be achieved.

From this regulation, we can see in Figure 10.

The error curve of the regulated damping
factor can achieve the same speed with
a small damping factor while maintaining
the stability. The regulation is shown
in equation below (Arnason and Hersir,
1988).

1
8:ﬂLAXL (18)

where L is trial number for every iteration
and Ax i1s the relative misfit which is
calculated with

X, =%

Av, = (19)

X
r—1

where x,; is a misfit form the previous
iteration and x,. is a misfit from the current

iteration.

5. Synthetic Data Inversion

Damped least-square inversion process is
started with choosing the staring model. The
starting model, in this case, is the final model
from Monte-Carlo inversion, which is the
average model (Figure 11).
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Figure 11. Average model from 10% best model from Monte Carlo that is used as starting model in damped least squares.

Inversion process is finished in some
iterations until the error is convergent and
one best model achieved. The Figure 12
shows that the calculated curve is
approaching the synthetic model. From the
quantitative aspect, the error curve will be

minimum as the iteration and the calculated
response approaching the synthetic data. The
inversion stopped when it reached RMS error
0.3% at 16" iteration, where the calculated
response gives a similar curve with the
synthetic curve.
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As the inversion model has more segment
than the synthetic model, the final model
gives us a model that has some difference
than the synthetic model. The difference is
relatively small as it happened because the
model tried to fit the calculated model to the
synthetic model. The depth of the model is
1050 m, which is relatively matched by the
depth of the synthetic model, 1000 m (Figure
13).

This whole scheme, from determining the
starting model to the final model, was
repeated for 19 times with the same steps
(Figure 14). Therefore, we assumed that
all the inversion had a small error, between
0.07% to 0.32%. Besides, the range of the
model depth was about 1045 m to 1115 m.
From these 19 inversion processes, we know
that the average depth of the Radon source is
1070 m. Therefore, we can say that the
combination of the Monte-Carlo and Damped
least-squares inversion method can overcome
and minimize the effect of the non-
uniqueness problem.

6. Real Data Inversion

In the previous explanation, we get that
the combination of Monte-Carlo and damped
least-square inversion successfully inverts
the synthetic data. By using that scheme,
we tried to solve the real Radon measurement
on the field. The measurement was held
in Rajabasa geothermal area, Lampung
Province in Southern area of Sumatera
Island, Indonesia. The Rajabasa geothermal
area was located in the area of Rajabasa
Mountain (Gunung Rajabasa) (Figure 15). By
applying the inversion scheme to the
measurement data, we tried to determine the
depth of the geothermal reservoir and the
value of Radon source. Data from the
Rajabasa geothermal area consist of two data
sets. The first section is what we call it
section AA’ with a length about 4000 m. The
second section is what we call it section BB’,
with a length about 3500 m. Both sections
were measured directly above the geothermal
prospect.
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Figure 13. Final model from the synthetic data inversion.
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Figure 14. The depth of the inversion scheme results for 19 repetitions that can minimize the non-uniqueness effect.
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Figure 15. Radon measurement map in Rajabasa Geothermal field.

Section AA’ data has three local maximums,
which indicate that there are abundant
sources underneath the surface (Figure 16a).
We applied the inversion scheme to the
data with 40 source segments with a width
of 100 m. Inversion process was repeated
for 19 times. From the repetition, we got

the error between 0.51% to 0.88%. The
depth range was between 620 m to 797 m,
where the average is 712 m (Figure 16b).
The final model shows that the Radon
source has a maximal value of 8763
Bg/m’ and the minimum value is 1533
Bg/m’.
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Figure 16. a) Final model from section AA” data inversion. b) Depth of the inversion scheme results for 19 repetitions.
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Section BB’ was inverted by the inversion
scheme with a starting model of 35 segments
(Figure 17a). Every segment has a width of
100 m. Similar to the synthetic scheme, the
inversion is repeated 19 times. The inversion
gives us results that the error was between
5.27% to 5.79%. The depth of the source was
a ranged between 682 m to 782 m where the
average depth was 728 m (Figure 17b). From
the result, we got a bigger relative RMS error
than section AA'. It happened because
section BB' has fluctuated data. The
fluctuation cannot be resolved by using only
100 m. While we can minimize the
relative RMS error by reducing the size
of the segment, we may get an inappropriate
result because of overfitting. When the
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model segment becomes too small, the
inversion process tends to make overfitting
final result. We tried to avoid this because
the fluctuation might be made from noise.
By getting consistent model results is enough,
though the relative RMS error was relatively
bigger. The result gives a maximum value of
7438 Bg/m’ and the minimum value of 9
Bg/m’.

From the two sections above, we know that
the depth of source was relatively close,
which are 712 m and 728 m. This result
confirms  the  previous  result of
magnetotelluric measurement by Dimwani et
al. (Dimwani et al., 2011). The study showed
that the geothermal lied in a depth of 500 m
to 1000 m beneath the surface (Figure 18).
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Figure 17. a) Final model from section BB’ data inversion. b) Depth of the inversion scheme results for 19 repetitions.

Figure 18. Magnetotelluric section that shows the geothermal reservoir under the conductive layer (Dimwani et al., 2011).
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7. Conclusions

Radon measurement on the surface can
represent the subsurface condition. From
measurement on the surface, we tried to do
an inversion. The inversion can show the
source parameters, which are the Radon
concentration and depth of the source. We
proposed a combination of global
optimization method and a least square
method to overcome non-uniqueness problem
while maintaining a fast computation. We
used Monte-Carlo and Damped least-square
inversion as the Monte-Carlo is a direct and
straightforward approach for determining the
starting model for the damped least square
method. The damped least square variant that
we used was based on singular value
decomposition. From the experiment, we got
that the Monte Carlo process gave adequate
starting model to the damped least squares.
The damped least squares gave a final model
that is similar to the synthetic model, which
gave errors between 0.07% to 0.32% in 19
repetitions. From that is repetition, we got a
final model that similar to the synthetic
model depth. The difference was relatively
small, about 7%. We can say that this
difference was relatively small because the
inversion has considerable uncertainty from
the non-uniqueness problem.

From here, we can say that the inversion
scheme that we proposed was quite
successful. Therefore, we tried to use this
scheme to invert the real data. The Radon
two sets of data were from Rajabasa
geothermal area in Indonesia. There are two
sets of data, which are the section AA’ and
the section BB’. The section AA’ inversion
gave an error range between 0.51% to 0.88%
and the depth of 712 m. On the other hand,
from the section BB’ we got error in the
range between 5.27% to 5.79% with a depth
of 728 m. These two final depth results give a
consistent result with the magnetotelluric
measurement from Dimwani et al. (2011).
We can conclude that the inversion scheme
of Monte-Carlo and damped least square
method can be used for determining the
geothermal reservoir depth, especially in
Rajabasa geothermal area.
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