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Abstract 
We propose the 3D gravity cross-correlation method to large scale data analyses as a fast analysis 
method to image the underground mass distribution. This method presents the cross-correlation 
product of the observed gravity anomaly (or its vertical gradient) and the calculated field due to an 
elementary mass contrast source. The cross-correlation product of the domain is used to highlight 
the zones of the highest probability of mass concentrations. First, some synthetic examples 
demonstrate the reliability and resolution of the method. The synthetic models discover different 
parameters of investigation space as space dimensions and densities. Tests with synthetic bodies 
show that the resultant correlation coefficients of the approach can delineate causative bodies in 
the subsurface. Finally, terrestrial gravity anomaly data of Iran is used to study the crustal structure 
and the Moho depth of Iran. The result is in a good agreement compared with other research 
studies of the domain. This technique took about five minutes to calculate the 3D gravity cross-
correlation of the whole terrestrial gravity data set of Iran (25,937 data) a computer. Hence, it can 
easily be used repeatedly to monitor changes of gravity field. 
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1. Introduction 
Today, the gravity imaging method has an 
important and widespread role in many 
branches of earth science, such as tectonic 
studies, mineral exploration, gas and oil field 
exploration, environmental issues, and more. 
Airborne surveys can also be used when the 
topography is rough, or the study area is wide 
(Inácio and Gunter, 2010). Airborne vertical 
gravity gradient surveys have some 
advantages over the ground surveys. 
Gravitational gradients are less sensitive to 
aircraft altitude, they are also more accurate, 
and they require no correction, such as 
Bouguer correction (Alberts, 2009). The 
purpose of inverting the gravity data is to 
retrieve the geometrical and physical 
parameters of the buried mass depends on the 
purpose of the study. 
There are two main approaches to 3D 
inversion of gravity data. In the first 
approach, the geometrical parameters of the 
model are kept constant by dividing the 
subsurface space into a grid of rectangular 
cells. In this case, the unknown density 
difference of each cell will be retrieved using 
some iterative optimization techniques (Bear 
et al., 1995; Braile et al., 1974; Li and 
Oldenburg, 1998). This method has an 

inherent problem called Non-uniqueness of 
solutions. In the second approach, the density 
difference is assumed to be stable, and 
unknown geometrical parameters of the 
model are estimated, such as in Talwani and 
Ewing (1960), Cordell and Henderson 
(1968), Oldenberg (1974), Gomez-Ortiz and 
Agarwal (2005), Chakravarthi and 
Sundararajan (2007). However, this approach 
also has the inherent non-uniqueness 
problem. In addition to the uniqueness of the 
solutions, all of the above-mentioned 
methods have another problem, they are very 
time-consuming and require a lot of 
computer memory. 
The 3D gravity cross-correlation approach is 
an imaging method for estimating the 
equivalent physical property distribution of 
the subsurface in a probabilistic sense, 
without any external constraints and any 
linearization. This method was first 
introduced by Patella (1997) to analyze 
Spontaneous Potential (SP) data to locate 
subsurface anomalies. Mauriello and Patella 
(1999a, 1999b) tested this method in natural-
source electromagnetic induction fields and 
resistivity data. Mauriello and Patella (2001) 
then applied this method to gravity data to 
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estimate the volume of buried masses. This 
method has also been used for multipole SP 
sources to determine possible locations of 
their centers and boundaries (Alaia et al., 
2009). In a subsequent study by Guo et al. 
(2011), this method was used for vertical 
gravity gradient.  
Previous studies have shown that using this 
approach is simple, easy to run, stable with 
low requirements of RAM of a computer, and 
less sensitive to noise. Also, this approach 
can be used for imaging large-scale observed 
dataset in a stable manner. The approach is 
suited to be used in the early phases of the 
interpretation process for an early evaluation 
of the subsurface source distribution, 
especially when no or little a priori 
information is available (Guo et al., 2010). 
In this paper, we study the crustal structure 
and the Moho depth of Iran by applying the 
3D gravity cross-correlation method on 
terrestrial gravity anomaly data of Iran. Thus, 
first we apply the 3D cross correlation 
method to Bouguer anomaly data, and 
Vertical Gravity Gradient (VGG). Some 
synthetic examples are also presented. 
Finally, the crustal structure and the Moho 
depth of Iran will be discussed by applying 
this method to the entire Bouguer anomaly 
data of Iran. 
 
2. Methodology 
In this section, we present the methodology. 
The survey is carried out on the (x, y) plane 
parallel to the sea level, and the z-axis is 
assumed positive downwards. For the prism 
element of our point mass, the Cartesian 
coordinate is Q=(xq, yq, zq), its density 
difference q , the volume of this element 

dv=dxdydz, and the survey is done at random 
station P=(xi,yi,zi). The theoretical gravity 
anomaly value is calculated as follows (Pluff, 
1976): 
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where ai, bi, zi, and γ are the Cartesian 
coordinates of the vertices of the prism and 
the universal gravitation constant, 
respectively, and: 
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vertices are aligned with the coordinate 
system, Plouff (1976) has proposed the 
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integral: 
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where Bq (xi, yi, zi) is called the geometrical 
function of mass Q for theoretical gravity 
anomaly at station P, and 

1
2 2 2 2[ ]ijk i j kR a b z                                    (4) 

And 

s=sisjsk with s1=-1, and s2=+1                        (5) 

Calculating the vertical derivative of 
Equation (1), the value of the theoretical 
vertical gravity gradient (VGG) at station P 
due to the cubic element Q is (Guo et al., 
2010): 

, , ( , , )z q q z q i i ig dvB x y z                      (6) 

where Bz,q(xi, yi, zi) is the geometrical 
function of the element Q for the gravity 
vertical gradient anomaly at station P, and its 
value after simplification is (Guo et al., 
2010): 
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Now, to calculate the correlation between the 
observed gravity anomaly value and the 
theoretical gravity anomaly value due to the 
Q-cell, we have (Mauriello and Patella, 
2001): 
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where N is the number of survey stations, 
and g is the observed gravity anomaly. By 
putting Equation (3) into Equation (8) we 
will have (Mauriello and Patella,2001): 
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The Zagros Folded Thrusting Belt (ZFTB)  
is the result of the convergence of  
the Arabian and Eurasian plates after the 
closure of the Young Tethys Ocean.  
After Zagros Zone, Sanandaj-Sirjan Zone 
(SSZ) can be mentioned, which forms  
the southwestern edge of Central Iran (CI), 
and is separated from the folded and  
thrust belt by the Main Zagros Thrust (MZT). 
SSZ is known by metamorphic formation. 
Many geologists consider the Urmia-Dokhtar 
Magmatic Arc (UDMA) as the NW  
boundary of the Sanandaj Sirjan Zone,  
which has the continuous volcanic  
activity (Berberian and King, 1981; 
Berberian, 1983). 
The closure of the Neotethys Ocean resulted 
in the emplacement of ophiolites along  
the Zagros suture zone, and the onset  
of deformation in the Zagros fold, and  
thrust belt (Stoneley,1981; Richards et al., 
2006). The collision process trapped  
the Central Iranian block between  
the Arabian plate in the south and the Turan 
shield (Kopeh Dagh) in the north, and led to 
intra-continental shortening, the formation of 
the Iranian plateau, widespread deformation, 
and mountain building (Bird, 1978). Alborz 
Zone is a region with high seismic activity, 
which is the result of the convergences of the 
Central Iran zone (to the north compared to 
Eurasia plate) and the southern basin of the 
Caspian Sea (to the west compared to Eurasia 
plate). 
The Makran area in southeastern Iran  
and southern Pakistan is a section of  
the Eurasian-Arabian Plateau that extends 
from the Hormuz Strait in Iran to the Indus 
River mouth in Pakistan. In Makran, the 
oceanic part of the Arabian Plate is 
subducted beneath Eurasia along a 
subduction zone from the Early Cretaceous 
(Page et al., 1979). 
Many studies have focused on bedrock 
characterization, the Moho discontinuity 

depth, the crustal structure, and  
tectonic status of different parts of Iran using 
airborne and terrestrial magnetic  
data, airborne and terrestrial gravity data, 
seismic, and teleseismic data. They have  
used various methods to model and process 
these data. In most of these studies, the  
goal was to determine the Moho depth  
and Upper Mantle Velocity Model in specific 
stations or several regions of Iran  
using Teleseismic data, and they did not 
provide a 3D image of the overall structure of 
Iran. 
One of the earliest studies about the crustal 
structure of Iran had been made by Dehgani 
and Makris (1983) who used gravimetric data 
to determine the depth of Moho. Mokhtari et 
al. (2004) used seismic data to determine 
Moho depth and velocity modeling in the 
upper mantle. Other studies on crustal depth 
and tectonic status of Iran can be referred to 
Taghizadeh et al. (2014) using teleseismic 
data by P-receiver transfer method. Mousavi 
and Ebbing (2018) using modeling and 
inversion of the combination of gravimetric 
and magnetic data to determine  
Iran's magnetic basement. Some other  
studies on the Moho depth of Iran are 
presented in Table 1, where different 
locations are compared with each other in 
eight groups. 
In this paper, for the first time, the  
whole gravimetric data of Iran is used  
to analyze the 3D structural status of Iran  
and its Moho depth. These data include 
scattered gravitational stations available 
throughout Iran that can be used effectively 
for large-scale geological and tectonic 
studies. Terrestrial gravity anomaly map  
of Iran is shown in Figure 12. The  
minimum of data is seen in the high  
Zagros zone, and the maximum of data  
is seen in the north of the Oman Sea  
(Makran Zone) and the south of the Caspian 
Sea. 
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Table 1. A brief history of Moho depth studies in Iran. (ZFTB: Zagros Folded Thrust Belt, SSZ: Sanandaj-Sirjan Zone, 
UDZ: Urumieh–Dokhtar Zone, MZT: Main Zagros Thrust, UDMA: Urumieh–Dokhtar Magmatic Arc). 

Region Explanation depth Ref 

Northeastern Iran 
Kopeh-Dagh 

Talesh mountains and northern Iran 50-60 
Shad Manaman et al. (2011) 

Beneath the Kopeh Dagh ∼40–45 

Kopeh-Dagh Mountains 43 ± 2, and 50 ± 2 km Taghizadeh et al. (2014) 

Caspian Sea 
The coastal region of the South Caspian Sea ~46 Radjaee et al. (2010) 

South Caspian Basin 30-33 Shad Manaman et al. (2011) 

Alborz 

Central Alborz zone 54 
Sodudi et al. (2009) 

Beneath the Damavand volcano ∼67 

Central Alborz zone 55-58 Radjaee et al. (2010) 

West, and East of Alborz mountains 35-37 
Shad Manaman et al. (2011) 

Under the Damavand volcano ~55–60 

Beneath the Alborz Mountains 50 ± 2 
Taghizadeh et al. (2014) 

Near the Damavand volcano 56 ± 2 

Central Iran 

The northern part of Central Iran ∼48 Radjaee et al. (2010) 

The southern part of Central Iran ∼42 

Shad Manaman et al. (2011) Middle of the Central Iran ∼35-42 

Lut block 35-40 

Central Iran (ave) 42 Afsari et al. (2011) 

Central Iran 47 Sodudi et al. (2009) 

Beneath the Central Iran 40 ± 2, and 44 ± 2 
Taghizadeh et al. (2014) 

Beneath the Iranian plate 40 ± 2 to 45 ± 2 

ZFTB - SSZ 

Beneath the MZT 65 
Shad Manaman et al. (2011) 

Beneath the SSZ 65 

Northwest Zagros (ave) 42 
Afsari et al. (2011) 

Sanandaj-Sirjan Metamorphic Zone (ave) 51 

Beneath the ZFTB 43 ± 2 
Taghizadeh et al. (2014) 

Beneath the SSZ 50 ± 2–55 ± 2 

Persian Gulf Under the Persian Gulf ~38 Shad Manaman et al. (2011) 

Makran 

Oman Sea 18-28 Abdollahi et al. (2018) & 
(2019) Makran fore-arc setting 35-40 

Western Makran 25-30 

Shad Manaman et al. (2011) Beneath the Makran highlands 48-50 

Eastern Makran ~40 

Makran region 33 ± 2 Taghizadeh et al. (2014) 

UDZ 
Below the UDMA ~42 Shad Manaman et al. (2011) 

Urmieh-Dokhtar Cenozoic volcanic belt 
(ave) 

43 Afsari (2011) 
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As shown in Figure 14 (a) to (d), Makran 
zone shows the highest values of the cross-
correlation products. It is similar to the 
gravity map of Iran (Figure 12). This zone is 
located in the southeastern part of Iran and 
north of the Oman Sea. The Moho depth map 
of Iran, using gravimetric studies (Dehghani 
et al., 1983) shows a thickness of about 40 
km for the crust in the northern Makran area, 
which gradually approaches less than 25 km 
along the coast of the Oman Sea. However, 
this research has a different result. The 
thickness of this zone is well visible in 
Figures 13, 14, and 15 compared to the other 
zones. As the depth increases, the positive 
correlation values increase rapidly, which 
implies that it has a shallow crust, and it also 
implies a density increase. As seen in Figure 
13, as the depth increases, the correlation 
values increase, which corresponds to the 
high-density oceanic crust present in this 
region extending to high depths. Based on 
these maps, it can be concluded that the 
depth of the Moho discontinuity in this 
region is almost ~20-30 km, which is almost 
consistent with Taghizadeh et al. (2014) and 
Abdollahi et al. (2018, 2019) results about 
this region. It is mentioned that with 
increasing depth, the Makran zone is 
extending beneath the Iran plateau toward the 
Lut block. 
Another part of Figure 12, which can be 
noted as anomaly, is the southern part of the 
Central Iran Zone. By applying the 3D cross-
correlation on it, interesting results can be 
obtained. This zone that corresponds to the 
Lut Block, and is in the eastern part shown in 
Figures 13 and 14 is coincident with 0 value 
contour. Topographically, the zone is 
completely flat and desert. According to 
Figure 12, the gravity anomaly in this region 
has median values of gravity data, which may 
belong to intrusive igneous intrusions that 
have intruded into the continental crust and 
have risen to near surface. The results of 
Correlation maps at different depths and 
correlation values in this area (Figures 13 and 
14) show that this anomaly is vanished in the 
65 km depth, and zero contour value is gone 
in 65 km depth. Therefore, it can be 
concluded that the Moho depth of this zone is 
45 km, and this result is almost consistent 
with the study of Shad Manaman et al. 
(2011) on this region. 

5. Conclusions 
In this paper, we introduce and evaluate the 
3D gravity cross-correlation method for 3D 
modeling of the gravity data (or its vertical 
gradient). This method was applied to three 
different synthetic models, and its advantages 
and disadvantages in the modeling of gravity 
anomaly and vertical gravity gradient data 
are discussed. The results show the high 
accuracy of this method in determining the 
shape and depth of the buried mass. This 
method is simple, easy to run, and as 
mentioned above, there is no need for an a 
priori information, which is the reason that 
this process is performed at a much faster 
speed than other commonly used inversion 
methods and commercial software. Because 
of that, this method is the fastest method for 
interpretation of large-scale data set. At the 
end, for the first time with the help of this 
method, and for a very short time, the whole 
terrestrial gravity anomaly data of Iran were 
seamlessly processed to study the 3D model 
of the crustal layer beneath the Iranian 
Plateau and the Moho discontinuity. The 
results are in agreement with previous works 
and researches. 
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