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Abstract

The Anticlines are the main hydrocarbon traps on land or at sea. This structure is considered as the
target of the many projects of gravity exploration all over the world. Artificial neural networks
(ANNSs) are used in order to solve prediction, estimation, and optimization problems. In this paper,
the feed-forward neural network (FNN) is applied for modeling the anticlinal structure using
gravity anomaly profile and the back propagation algorithm is used for artificial neural network
training. Moreover, the scalene triangle model is employed to describe the geometry of anticlinal
structure in analyzing gravity anomalies. In terms of neural network training, eight features among
the synthetic gravity field variations curves along 22500 profiles are defined. These gravity
profiles are computed based on different values of the scalene triangle parameters consisting of the
top depth, bottom depth, limb angles and density contrast. The defined neural network contain
three layers, eight neurons (the number of features) in the input layer, 30 neurons in the hidden
layer and six neurons (the number of scalene triangle parameters) in the output layer. In order to
evaluate the performance of the trained neural network, the specified features related to a synthetic
model, with and without random noise, are applied as the input data to train neural network. The
parameters estimation error by FNN is negligible. The proposed method is illustrated with a real
gravity data set from Korand region, Iran. The inferred anticlinal structures are compared with the
interpreted map of the seismic data.

Keywords: Anticlinal structure, Feed-forward neural network (FNN), Gravity, Scalene triangle,

Iran.

1. Introduction

Anticlines are amongst the most important
geological structures in regional studies and
hydrocarbon exploration using potential
methods. In general, inversion of gravity
anomalies is non-unique in the sense that the
observed gravity anomalies in a survey can
be explained by a variety of density
distributions. To resolve such ambiguity, the
anomalous mass should be estimated by a
suitable geometry with a defined density
contrast. Several forward gravity modeling
schemes have been proposed based on
constant or variable density contrast for
anticlinal structure (Rao and Avasthi, 1973;
Heiland, 1968; Rao and Murty, 1978;
Chakravarthi and Sundararajan, 2007 and
2008). Although the exhibited methods differ
in the definition of the density changes in
proportion to depth, the normal isosceles
triangular model is generally used to describe
the geometry of this structure to analyze
gravity  anomalies  (Chakravarthi  and
Sundararajan, 2007). Since the anticlinal
structures in nature have mostly two non-

isocline flank, utilization of the isosceles
triangular model will be accompanied by a
large error in the modeling. Using the scalene
triangle so as to reducing errors has been
proposed. In this study, the density contrast
has been assumed constant with depth.
Artificial neural networks (ANNs) aim at
modeling using the information processing
by nervous systems. Their application to
solve a wide range of problems in various
scientific fields makes them very distinctive.
The ANNs are useful and powerful tools for
analyzing automatically and consequently
presenting sagacious interpretation of the
gravity field data. In this paper, a new
method for anticline structure modeling
based on feed-forward neural network (FNN)
is presented. The network has been trained by
the features extracted from a set of synthetic
data and the model parameters as input and
output. Back propagation algorithm is used in
order to train the FNN. The back propagation
is defined as an approximate steepest descent
algorithm that minimizes mean square error.
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ANNs can be a vigorous and smart
implement for performing nonlinear
functional mapping between a set of input
variables such as gravity field data and a set
of output or source parameters, together with
particular procedures for optimizing the
mapping (Bishop and Hinton, 1995). Neural
networks (NNs) have been employed for
interpreting well logs (Huang et al.,1996),
recognizing seismic wave forms
(Ashida,1996) and automatic detection of
buried utilities and solid objects from GPR
data (Al-Nuaimy et al., 2000). In addition,
ANNs are frequently employed for the
potential data interpretation. For example, the
back propagation network was used for
structural interpretation of aecromagnetic data
(Pearson et al., 1990), classification of buried
objects from their magnetic signatures
(Brown, et al., 1996) and detection of tunnels
from gravity data (Salem et al., 2001). Depth
and radius of subsurface -cavities are
determined from microgravity data using
back propagation neural network (Eslam et
al., 2001). The forced neural network was
used by Osman et al. (2006) to interpret a
profile of the residual gravity anomaly and,
consequently, by Osman et al. (2007) to
provide a forward modeling for gravity
anomaly profile. Al-Garni (2013) used the
modular neural network (MNN) inversion to
compute the depth and the shape factor of the
causative target from a gravity anomaly.
Eshaghzadeh and Hajian (2018) introduced a
new concept of the modularity for analysis of
the gravity field by modular neural network.
The feed forward neural networks have been
tested for the synthetic gravity data, with and
without noise. The results indicate that
FNNs, if trained adequately, are able to
evaluate the scalene ftriangle parameters
correctly. The proposed technique is applied
to gravity data from Korand region in north
of Iran to estimate the parameters of the
anticlinal structure. The results demonstrate
high similarity with the results attained from
seismic operation.

2. Forward Gravity Modeling of Scalene
Triangle

For FNN training, we need to determine a
series of features from the calculated gravity
field of a scalene triangle model. Figure 1
displays a schematic view of 2D geometry of

anticlinal structure. The Z-axis is positive
downward and the X-axis is transverse to the
strike of the model. While, z; and z, are the
depths to the top and bottom of the model
and 7 and j are the angles of the anticline limb
as shown in Figure 1. It is worth mentioning
that the gravity anomaly 4g(x) at any point
P(x;0) on the X-axis can be derived from the
fundamental equation of a gravity anomaly
due to a 2D source with a cross-sectional area
s (Rao and Murthy, 1978):

Apzdvdz
Ag(x) = 2G[g—— (1
r

S
R = 'P(x',o)
0(0,0) g X

Figure 1. Geometry of anticlinal structure.

where G is the universal gravitational
constant, dvdz is the cross-sectional area of a
linear mass, 4p is the density contrast
between an anticlinal structure and its
covering sediments, and r is the radial
distance from the element dvdz to the point
P(x’;0). Substituting limits for spatial
coordinates, the gravity anomaly of anticlinal
structure on the main profile can be
expressed from Figure 1 as:

zy (z—2z;)coti

Apzdvdz
z=z; Jy=—(z—z)cot j 22 + (V— X)2

)
where x=x'-S, S is the distance of the origin
of the model from the reference point, R
(Figure 1). On integration, Equation (2) can
be rewritten as:

Ag(x)=2G

(4= B)~(C - D)] —} 3

Ag(x) = ZGAp{
[(E-F)—(H -1)]

where
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3. Feed-Forward Neural Network (FNN)

Today, the FNN is regarded as an important
neural network. The case of non-linear
problems consists of at least three layers. As
seen, a schematic diagram of a FNN is shown
in Figure 2, where information flows from
inputs to outputs in only one direction. The
leftmost layer in this network is called the
input layer, and the neurons or processing
elements within the layer are named the input
neurons. The network takes the data through
this layer. Each neuron consists of a vector of
modifiable weights or connection strengths

2(x - z, cot(j) 2c0t2(j)+1

(Macias et al., 2000). The rightmost or output
layer contains the output neurons, as in this
case, there is a single output neuron. The
output neuron or neurons have distinct sets of
weights and process the input values to
generate a result (El-Kaliouby and Al-Garni,
2009). The middle layer is called a hidden
layer which can contain the different
numbers of processing elements. Each
neuron transmits a single data value over
weighted connection to the hidden neurons
where they process the input data and
dispatch their results to the output layer.
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Figure 2. Feed-forward topology of an artificial neural
network.

In this paper, FNN is used for estimating the
model parameters estimation by the specified
features from the gravity forward modeling
of the scalene triangle model. As for the FNN
to recognize the pattern of the gravity profile
data, some features are defined as the input
of the FNN. For neural network learning with
gravity data, some features are selected from
the profile of the gravity field undulation. In
other words, there must be a relation with the
geometrical parameters of the anticline. We
can divide the process of the NN procedure
into three parts: the first, training data
production (in such cases study using
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forward modeling), the second, neural
network training and the third part, NN
inverse modeling.

4. Neural Network Training

ANNs can be categorized into two main
categories: unsupervised recurrent and
supervised feed-forward networks. In the
unsupervised recurrent type, the networks
allow information to flow in both directions.
These models are called unsupervised given
the fact that there was no supervision on the
set-out of the input-output mapping relation
during the learning phase. On the other hand,
in the supervised model, through a set of
correct input-output pairs called the training
set, the network learns the relation between
the input-output pairs which has been used in
the back propagation algorithm for network
training. As a matter of fact, the aim of
neural network training is to construct a
relationship between known input—output
parameters for a given problem to apply the
trained network to input parameters with
unknown outputs later on. Figure 3 depicts
the gravity field variations along a profile for
the 2D scalene triangle model with the
parameters z;=1 km, z,=4 km, i=40°, j=20°
and Ap=100 kg/m’.
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Figure 3. A pattern for estimating features from the gravity anomaly curve (upper) of an anticlinal structure (below).
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Considering Figure 3 as a criterion, the
features are defined as following:

f1= maximum gravity, gp.

f2=ratio of nl to ml in gl where the gravity
value is 75% of the maximum gravity value.
3= ratio of n2 to m2 in g2 where the gravity
value is 50% of the maximum gravity.

f4= ratio of n3 to m3 in g3 point where the
gravity value is 25% of the maximum
gravity.

f5= ratio of width of curve in g3 to the width
of curve in g2, (n3+m3)/ (n2+m2).

f6= ratio of the width of curve in g3 point to
the width of curve in gl point, (n3+m3)/
(nl+ml).

f7= ratio of the gravity values difference in
gn and g2 points to the gravity values
difference in gl and g3 points, (g,-g2)/(gl-
23).

f8= horizontal distance between the origin to
maximum gravity (x in Figure 3).

Since there are eight defined features, input
layer in neural network includes eight
neurons. The outputs are geometric
characteristics related to the anticlinal
structure, namely zi, 7, 1, j, Ap and x. Hence,
the output layer of the neural network
contains six neurons. The correct number of
hidden neurons can be determined more
reliably by trial-and-error methods. Here, 30
neurons have been applied in the hidden
layer. Figure 4 reveals the structure of FNN
used for the gravity inverse modeling in this

paper.

Input layer

Figure 4. The structure of the designed three- layers
FNN with eight neurons in the input layer,
30 neurons in the hidden layer and six
neurons in the output layer.

Output layer

In order to propose a method to estimate the
geometric parameters of the anticlinal
structure, the trained neural network is
required. The gravity effect of the scalene
triangle model has been calculated to
measure the limits of the parameters z;, z,, 4p
as well as angles i and j, respectively, from 3
to 4.5 km with five points in this range, from
4.5 to 6 km with five points in this range,
from 100 to 400 kg/m’ with six points in this
range, from 15 to 40 degree with six points in
this range. The parameter x related to each
forward modeling is computed separately, as
for horizontal distance is considered five
points between 0 to 1 km. The point of note
is that the values of the parameters have been
selected randomly for each forward
modeling. Therefore, 180000 features are
extracted from 22500 estimated gravity
profiles. The parameters ranges have been
chosen based on the action of measured
gravity field data and the geological
information of the study region. Afterwards,
the defined features relevant to each gravity
field variations curves are obtained as
training data or patterns. The most widely
used training method is known as the back
propagation method. The back propagation
method produces a least-square fit between
the actual network output and a desired
output by computing a local gradient in terms
of the network weights (Rummelhart et al.,
1986). The weighted sum of the inputs is
rescaled by an activation function before
transferring to the hidden layer and also the
weighted sum of the hidden layer neurons is
rescaled by means of an activation function
before transferring to the output layer.

The sigmoid function has been employed for
the first layer and the linear activation
function for the output layer (Figure 5).

Activation function Comments

Linear 2
) Perfect storage

1 of any pattern.
but amplifies
noise.

Sigmoid Supresses
noise, contrast

3
enhances. not
quantized.

Figure 5. Specifications of the linear and sigmoid
activation function (Rojas, 1996).




The sigmoid function is one of the most
popular activation functions for back
propagation networks. A  symmetrical
activation function has some advantages for
FNN learning. The symmetrical sigmoid is
defined as (Rojas, 1996):

l-¢ *

Sg(x) = (12)

l+e *

This method requires computation of the

gradient of the error function at each iteration

step. The amount of the error is given by
(Macias et al., 2000)

1N M

E=—-3% %

13
2 l=1k=1 (13)

() —ob)?
Here, N is the numbers of input vector, M is
the numbers of the model parameters, y is the
model parameters and o is the resulted model
parameters by the FNN. Back propagation
solves the problem directly by minimizing E.
To train the NN, 70% of the pattern has been
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employed. Furthermore, 15% of the patterns
are used for the final NN testing and analysis
and the remaining 15% of patterns are
utilized for the validation to prevent the
overfitting. Figure 6 indicates the mean
squared error variations of the NN training,
testing and validation versus the iteration
increase. The training set is used to compute
gradients to determine the weight update at
each iteration. When the validation error
grows for a specified number of iterations,
the training is stopped, and the weights
causing the minimum error on the validation
set are used as the final trained network
weights (Hagan et al., 1996). In Figure 6, the
goal is the defined minimum error, that is 0.1
and the best is the computed minimum error
that is 0.885 at iteration 87. The histogram of
errors has been exhibited in Figure 7. The y-
axis represents the number of errors that falls
within each interval on the x-axis. Based on
the results of the error analysis, the process
of the NN training was well accomplished.

Best Validation Performance is 0.88476 at epoch 87
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Figure 6. Mean squared error reduction versus iteration for achieving a trained FINN.
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5. Synthetic
Modeling
The drawn curve in red in Figure 8
demonstrates the theoretical noise-free
gravity anomaly of a scalene triangle
model while the parameters assumed for
this model are z,=3 km, z,=5 km, =20°,
j=30° and Ap=150 kg/m’. The sampling
is performed at 57 points along a 28 km
profile with 0.5 km interval. The gravity
response of the resulted parameters with the
FNN inverse modeling for noise-free data has
been displayed in Figure 8 by the black
curve. To check the trained FNN
performance in the existence of noise for
estimating the parameters of the gravity
anomaly causative target, two sets of random
noise with different amplitudes added to the
synthetic gravity anomaly data by following
equations:

Gravity Data Inverse

(14)
(15)

Zhoise X;) = &(x;)+0.2(RAN() - 0.5)

EnoiseX;) = &(x;) +0.5(RAN() - 0.5)

where g, . (x,)is the noisy gravity
anomaly value at x; and RND(?) is a pseudo-
random number whose range is (0, 1).

The red curves in Figures 9 and 10 represent
the corrupted data by two random noise set
with an amplitude of 0.2 mGal and 0.5 mGal,
respectevely. The generated gravity of the
inffered structures with the FNN inverse
modeling for noisy synthetic gravity data
have been displayed in Figures 9 and 10 by
the black curves.

In order to quantitative comparison, the
errors between the forward modeling gravity
or observed gravity and the estimated gravity
from the FNN output are calculated using the
root mean square error (RMSE) (Asfahani

and Tlas, 2008):

[( iObS _glFNN)Z]

1 N
RMSE = \/ — X (16)
Ni=l
where g™ is the observed or modeled
gravity, g"\" is the rated gravity by FNN and

N is the number of gravity data set.
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Figure 8. The free-noise gravity field data of the scalene triangle synthetic model with parameters z1=3 km, z2=5 km,
i=20°, j=30° and Ap=150 kg/m3 (red curve), and the gravity responses of the FNN inversion (black curve).
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Figure 9. The black curve shows the gravity response of the FNN inverse modeling for the theoretical gravity data
imposed by a random noise of 0.2 mGal amplitude (red curve).
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Figure 10. The black curve shows the gravity response of the FNN inverse modeling for the theoretical gravity data
imposed by a random noise of 0.5 mGal amplitude (red curve).

FNN

inverse modeling for the synthetic data, with
and without noise, and evaluated errors have
been given in Table 1. The errors in the

10

15

estimation of the depths, angles and density
contrast increase proportionally with the
noise ratio. The results are satisfactory and

acceptable.

Table 1. The initial parameters of the scalene triangle synthetic model and estimated parameters using FNN inversion.

Parameters
Z1 (km) 72 (km) I (deg) J (deg) Ap (kg/m’) x (km) RMSE
Initial values 3 5 20 30 150
Free-noise
gravity data 2.98 5.01 20.13 30 148.7 0.5 0.025
Error % 0.7 0.3 0.65 0 0.87 0.5
With a noise of
2mGal 3.05 4.95 19.36 31.62 156.4 0.494 0.187
amplitude ’
Error % 1.7 1 3.2 5.4 4.3 1.2
With a noise of
5mGal 3.09 5.12 18.57 32.27 158.1 0.487 0.237
amplitude )
Error % 3 2.4 7.15 7.6 5.4 2.6
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6. Field Example

The region under study named Korand
is located in Golestan province, northeastern
Iran. The yellow cursor on the rightmost
side picture in Figure 11 displays the position
of Korand region. As evident, the region
lies in the Kopet Dagh geological
and structural unit covered by the quaternary
thick sediments. Figure 12 displays
the geological map of the study region.
The blue rectangular on the geological map
shows the gravity field measurement area
limits. Because of the hydrocarbon
reservoirs, this zone 1is important and
noteworthy. The aim of the gravity

Figure 11. The satellite image of the area under consideration, namely Korand (yellow cursor in left-hand side picture).
The rightmost side picture shows the morphology of Korand.

observation is to detect the anticline as the
hydrocarbon trap.

Figures 13 and 14 present the contour map
related to the Bouguer gravity anomaly and
the topography map of the area under
consideration, correspondingly. The
altitudinal map depicts the height reduction
from the southeast to the northwest,
gradually. Removing a quadratic trend from
the Bouguer anomaly map, the residual
gravity anomaly relevant to the exploration
region is computed (Figure 15). The positive
anomaly noticeable in the residual gravity
map center is related to an antiformal
structure.
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A: Fluvial and local deposits.

B: Fluvio lacustrine deposits in shallow depression, including lake clay and saline.

C: Flood basin and shallow depression fill deposits, saltatory grey sand, silt.

D: Fluvio, eolian and fluvial deposits, sand, silt and accessory clay.

E: Fluvio lacustrine deposits and valley floor complexes under alternating lacustrine and fluvial condition.

Figure 12. The geological map of Korand. The blue rectangular displays the study area limits.



88 Journal of the Earth and Space Physics, Vol. 46, No. 4, Winter 2021

356000 360000

364000

368000

372000

Seake 1:100000

000Z6L¥ 00096LF 00000Zt

¥

meters)
wEs SJ{/UTM:MQ 40N

Figure 13. The contour map of the Bouguer gravity field.
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Figure 14. The topography map of Korand area.

The data were picked up at 100 m interval
along Profiles A-A', B-B' and C-C' in the
gravity anomaly for inverse modeling using
FNN; the gravity field variations along these
profiles as well as the results of the FNN
inversion responses has been revealed in

Figures 16, 17 and 18, separately. The
inverted parameters using FNN and error
estimates are tabulated in Table 2. The x4 in
Table 2 shows the evaluated position of the
ridge of the subsurface inferred anticlinal
structure.
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Figure 15. The residual gravity anomaly map. The direction of the profiles A-A', B-B' and C-C' has been presented in

map.
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Figure 18. The gravity field variations along profile C-C' and the gravity response of the inverted parameters by FNN.

Table 2. Evaluated parameters using the FNN inversion for the profiles A-A', B-B' and C-C".

Profile Parameters 3
Z1 (km) | Z2 (km) I (deg.) J (deg.) Ap (kg/m’) X, (km) | RMSE
A-A' 3.43 5.16 24.93 21.36 372.8 3.5 0.741
B-B' 3.65 5.34 33.1 18.04 383.4 3.6 0.264
c-C' 3.86 5.37 26.2 25.85 391.7 34 0.502
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In Korand area, the Tirgan formation found
the upper surface of the anticline because of
its solidity and hardness against erosion. The
depth contour map of the anticlinal structure
based on the seismic data analysis (Figure
19) demonstrate which one of the determined
depths parameters using FNN inversion have
a good conformity with the estimated ones in
the seismic approach.

7. Discusion and Conclusion

The presence of error in the geophysical
modeling and numerical computation
is unavoidable due to some factors such
as the heterogeny and discontinuity of
the interior geological structures, the
incoherence and incompatibility of the
undersurface  structures, and  masses
configuration with  geometric  shapes.
Therefore, the proposed method, which is
FNN, is not an exception as well. In another
word, the existence of error in FNN inversion
response is unavoidable.

In this paper, an innovative approach has
been developed based on the FNN with three
layers to determine the top and bottom depth,
angles and density contrast parameters of an
anticlinal structure from gravity anomaly
data. We have characterized the antiformal
formation analogous the scalene triangle
model, geometrically. Moreover, a new
method has been presented for computing the

profile gravity data of an anticlinal structure
with various slopes.

Geological information plays an important
role in the training data production. We have
used a data set with 180000 features
extracted from the gravity forward modeling
for training and testing the neural network.
The designed network was tested by both
synthetic and real gravity data. The validity
of this method was tested using noise-free
and noise-corrupted synthetic models, from
which the satisfactory results obtained. The
results of error analysis demonstrate that the
FNN is sensitive to the noise, as the root
mean square error estimates for the free-noise
data and the added noise of 0.2 mGal and 0.5
mGal amplitudes to the synthetic data are
0.025, 0.187 and 0.237, respectively.

We have compared the inverted depths
parameters using FNN with the ones
estimated by the seismic method. The FNN
inverse modeling results confirm well to the
seismic data interpretation. The numerical
results of both methods show that the depth
follows an upward trend from east to west,
but the maximum depth estimation shows
significant differences. The average of the
density contrast in the field has been
computed as 382.6 kg/m’. We can conclude
that the FNN is a powerful, intelligent and
exact method for the gravity data modeling
and resolution.
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Figure 19. The depth contour map extracted from the seismic data for the Tirgan horizon.
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