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Abstract 
The Anticlines are the main hydrocarbon traps on land or at sea. This structure is considered as the 
target of the many projects of gravity exploration all over the world. Artificial neural networks 
(ANNs) are used in order to solve prediction, estimation, and optimization problems. In this paper, 
the feed-forward neural network (FNN) is applied for modeling the anticlinal structure using 
gravity anomaly profile and the back propagation algorithm is used for artificial neural network 
training. Moreover, the scalene triangle model is employed to describe the geometry of anticlinal

 structure in analyzing gravity anomalies. In terms of neural network training, eight features among 
the synthetic gravity field variations curves along 22500 profiles are defined. These gravity 
profiles are computed based on different values of the scalene triangle parameters consisting of the 
top depth, bottom depth, limb angles and density contrast. The defined neural network contain 
three layers, eight neurons (the number of features) in the input layer, 30 neurons in the hidden 
layer and six neurons (the number of scalene triangle parameters) in the output layer. In order to 
evaluate the performance of the trained neural network, the specified features related to a synthetic 
model, with and without random noise, are applied as the input data to train neural network. The 
parameters estimation error by FNN is negligible. The proposed method is illustrated with a real 
gravity data set from Korand region, Iran. The inferred anticlinal structures are compared with the 
interpreted map of the seismic data.  
 

Keywords: Anticlinal structure, Feed-forward neural network (FNN), Gravity, Scalene triangle, 
Iran. 

 

1. Introduction 
Anticlines are amongst the most important 
geological structures in regional studies and 
hydrocarbon exploration using potential 
methods. In general, inversion of gravity 
anomalies is non-unique in the sense that the 
observed gravity anomalies in a survey can 
be explained by a variety of density 
distributions. To resolve such ambiguity, the 
anomalous mass should be estimated by a 
suitable geometry with a defined density 
contrast. Several forward gravity modeling 
schemes have been proposed based on 
constant or variable density contrast for 
anticlinal structure (Rao and Avasthi, 1973; 
Heiland, 1968; Rao and Murty, 1978; 
Chakravarthi and Sundararajan, 2007 and 
2008). Although the exhibited methods differ 
in the definition of the density changes in 
proportion to depth, the normal isosceles 
triangular model is generally used to describe 
the geometry of this structure to analyze 
gravity anomalies (Chakravarthi and 
Sundararajan, 2007). Since the anticlinal 
structures in nature have mostly two non-

isocline flank, utilization of the isosceles 
triangular model will be accompanied by a 
large error in the modeling. Using the scalene 
triangle so as to reducing errors has been 
proposed. In this study, the density contrast 
has been assumed constant with depth.  
Artificial neural networks (ANNs) aim at 
modeling using the information processing 
by nervous systems. Their application to 
solve a wide range of problems in various 
scientific fields makes them very distinctive. 
The ANNs are useful and powerful tools for 
analyzing automatically and consequently 
presenting sagacious interpretation of the 
gravity field data. In this paper, a new 
method for anticline structure modeling 
based on feed-forward neural network (FNN) 
is presented. The network has been trained by 
the features extracted from a set of synthetic 
data and the model parameters as input and 
output. Back propagation algorithm is used in 
order to train the FNN. The back propagation 
is defined as an approximate steepest descent 
algorithm that minimizes mean square error. 
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3. Feed-Forward Neural Network (FNN) 
Today, the FNN is regarded as an important 
neural network. The case of non-linear 
problems consists of at least three layers. As 
seen, a schematic diagram of a FNN is shown 
in Figure 2, where information flows from 
inputs to outputs in only one direction. The 
leftmost layer in this network is called the 
input layer, and the neurons or processing 
elements within the layer are named the input 
neurons. The network takes the data through 
this layer. Each neuron consists of a vector of 
modifiable weights or connection strengths 

(Macias et al., 2000). The rightmost or output 
layer contains the output neurons, as in this 
case, there is a single output neuron. The 
output neuron or neurons have distinct sets of 
weights and process the input values to 
generate a result (El-Kaliouby and Al-Garni, 
2009). The middle layer is called a hidden 
layer which can contain the different 
numbers of processing elements. Each 
neuron transmits a single data value over 
weighted connection to the hidden neurons 
where they process the input data and 
dispatch their results to the output layer. 
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