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Abstract

A precise orbit of alow Earth orbiting satellite helps us to compute the long wavelength
structure part of the gravity field of the Earth. There are different methods and frames for
orbit integration depending on the problem and satellite mission.

In this paper, the dynamic equations of the satellite motion are presented in different
frames of navigation. A simple numerical study on a satellite orbit in local framesis aso
included. In these frames the geodetic coordinate of the satellite is directly integrated.
Numerical studies confirm that the north-east-down frame is not stable for orbit
integration either. However, the paper shows how to solve this problem by choosing a
wander frame and its ability.
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1 INTRODUCTION

There are different frames for navigation, such as
the inertial frame, elipsoida frame, north-
east-down (NED) or navigation frame, and
wander azimuth frame or wander frame.
Differential equations of motion can be solved
in each one of the mentioned frames. Navigation
is defined as determination of position
and velocity components of a moving vehicle
(Jekeli, 2001), so the navigation can be done
in different frames by double integration of
accelerations. Wolf (2000) and Su (2000) used
the inertia frame for ephemeris computations
and orbit determination of different types of
satellites. Schéfer (2000) also used the numerical
integration and orbit optimization using the
Kaman filter on the CHAMP satellite in
the inertial frame. Eshagh and Najafi Alamdari
(2004 and 2005) used different methods of
integration in orbit determination; they used
the inertial frame in order to present the satellite
orbit. Most persons working on orbit integration
use the inertial frame because of its simplicity.
The mathematical models of perturbing forces
are aso formulated in this frame. The output
of the navigation solution is the position
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and velocity vectors coordinated in this frame
too.

In this paper we consider the possibilities of
integrating orbit in alocal frame and we show that
the satellite orbit can also be integrated in such
frames. The local frames are the moving frames
with the vehicle and the integration is directly
preformed on geodetic coordinates of the vehicle.
Although orbit integration in such frames is more
complicated than the inertial frames, the presented
formulas can easily be used in other applications
of navigation. The NED frame of navigation has
difficulties when the satellite is approaching the
poles because of meridian convergence. This
problem can be solved by selecting a wander
frame.

In the next section of this paper the navigation
equations in different frames are generaly
introduced. This section is divided into 4 sub-
sections, and in each sub-section the navigation
equation is formulated so that we have simpler
differential  equations of motion. Numerical
studies related to the local frames are aso
presented in corresponding sub-sections. In
Section 3 conclusions are also presented.
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2 NAVIGATION EQUATIONS

Navigation or positioning using an inertia
navigation system is based on integrating the
sensed accel erations with respect to time, in order
to obtain velocity and after that position vectors.
It is clear that the navigation equation is a second
order differential equation; such differential
equation can be written as

X=g(x)+a, (6h)

where, X isthe position vector, g isthe Earth's

gravity field corresponding to position vector X,
a is sensed or non-gravity field accelerations
acting on the vehicle. This a differential equation
can also be written in other non-inertial frames,
such a differential equation is known as free-
inertial equations (Jekeli, 2001).

This section is divided into 4 sub-sections in
which the navigation equations are formulated. In
the next sub-section the navigation equations in
an inertial frame are presented, and in sub-
sections 2-2, 2-3 and 2-4 these equations are
presented in an ellipsoidal (geodetic), north-east-
west (NED) and wander frames, respectively as
well as numerical studies on local frames.

2-1 NAVIGATION EQUATIONS IN AN
INERTIAL FRAME

The Newtonian definition of the inertial system
implies an Euclidean system, defined as a system
with coordinates satisfying Euclidean geometry.
The dynamics of the motion in this system can be
formulated on the basis of Newton's second and
third laws. We will retain the name inertial frame
for the frame that is attached to the Earth’s center
of mass and is non-rotating. The frame's
orientation is fixed to the celestial sphere as
realized by the observed directions of quasars,
extremely distant celestial objects that have not
shown any evidence of changing their relative
orientation. The dynamic equations of motion of a
vehicle in an inertial frame can be expressed as
follow

d o i i i

—x'=d +d, 2
at +9 @)
d i i

—x'=X, 3
at ©)

where, X' and X' are the position and position
rates, and a'and Q'ae the measured and
gravitational accelerations in the inertial frame,

respectively. This is usual method of integration
of the equation of motion of any vehicle like a
satellite as employed by Wolf (2000), Su (2000).
Most of the perturbing forces and their
mathematical relations are formulated in such a
frame. Thisiswhy thisframeis of interest to most
of the researchers. Numerical integration
algorithms can be used for solving the navigation
equations easily in this frame. Many numerical
integration methods exist for solving such
differentia  eguations, such as Runge-Kutta
(Babolian and Maleknegjad, 1995) algorithms of
different orders, Adams-Bashforth, and Adams-
Moulton predictor-corrector algorithms (Babolian
and Maleknegjad, 1995), Runge-Kutta Fehlberg, or
Adam step-variable numerical orbit integration
methods (Eshagh, 2005). In order to solve these
equations the algorithms of Runge-Kutta of the
fourth order are employed in this study; see e.g.
Eshagh (2003).

The problem of initial values is of importance
for integrating the equations of motion. In order to
start the integration process we use the initia
values due to the ESA (G. Plank, persona
discussion, European Space Agency) of the
GOCE (Gravity field and Ocean Circulation
Explorer) satellite. For more details about how to
integrate the orbit in this frame the interested
reader is referred to Eshagh and Najafi Alamdari
(2006).

2-2 NAVIGATION EQUATIONS IN AN
ELLIPSOIDAL FRAME

An éellipsoida frame is fixed to the Earth;
its origin is also at the Earth’'s center of mass.
Its coordinate’s axes are defined by convention
such that the 3-axis is a mean, fixed, polar
axis; and, on the corresponding equator a
zero-longitude is defined that specifies the
location of the l-axis. The general dynamic
equations of satellite motion in the ellipsoidal
frame have been presented in Jekeli (2001) in
matrix form and we have summarized those
equations as
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and o, is the Earth’s rotation rate, X° and X°

are the velocity and position vectors in the
dlipsoidal frames. This set of differentia
equations can easily be solved using different
integrators, like Runge-Kutta of the fourth order.
It is of importance to note that the Earth’s gravity
field and acceleration components should be
given in the elipsoidal frame before integration.
This frame is useful to integrate the orbit in
existence of just geopotential perturbations.

2-3 NAVIGATION EQUATIONS IN A
NED FRAME

A NED frame is a specia type of the local
coordinates systems; where the third axis is
aligned with the ellipsoidal normal at a point, in
the “down” direction, the first axis points due
north, and the second axis points east. The NED
frame, adopted here and conventionaly
implemented in the field of inertial navigation, is
known as the navigation frame. Its 3-axis does not
pass through the Earth’s center of mass; thisisthe
compilation of transformation between this frame
and the ellipsoidal frame. The purpose of this
frame is to provide local directions, north, east,
and down dong which velocities may be
indicated. This is particularly useful in those
navigation systems that are mechanized such that
the sensors are aways aligned with the local
horizon and the vertical. The NED frame servesto
define local directions for the velocity vector
determined in a frame in which the vehicle has
motion. The origina formulas of the navigations
in this frame are in Jekeli (2001) and we
summarized it them as:

components of the acceleration vector and
Onv: O and g, are the components of the

Earth’s gravitational vector. Integration of the
above equations is unstable in the vertical
channel. Therefore, over longer periods it is
attempted to control the error due to the vertical
components, for example by atimetry
measurements in airborne aspects (Jekeli, 2001).
Another problem of the above system of
differential equations is the initial values. The
initial values can be obtained by an externa
source like GPS receiver carried by the vehicle or
satellite.

Let the satellite is integrated using Runge-
Kutta agorithm of the fourth order in the
NED frame. The initial values should aso be
transformed into the NED frame before
integration. Using the measured accelerations
and these initiadl values and above system of
differential equations we have figures 1 (a),
(b), and (c) show the latitude, longitude, and
height of the satellite in the NED frame. As
can be seen, the satellite is unstable in the
height channel when it is approaching the
poles, and it is unbounded. Similar interpretation
can be expressed for the velocity according to
figure 1 (d), (e) and (f). The other components
seem to be stable. It is better to say that the
NED frame should be used for very low
duration of flight or satellite revolution. It is
not suitable for longer period of integration;
because the unbounded behavior of vertica
channel makes the solution more unstable as time
increase and it can affect other parameters
like longitude after long time. This frame is not

v, [ a, —2m, SNGVe — v, —A SNV, + Ty |
Ve ag +2m,(cosdv, +Singv, ) + A(SINGV,, +COSOV, ) + T
djve|_ a,, — 2m, COSOV — GV, — A COSOV, +Tp | -
dt| ¢ v, /(M +h)
A Ve /(N +h) cosd
Lhl | ~Vp |

where @, A and h are latitude, longitude and
geodetic height, respectively, V, Vg and Vg,
are the components of the velocity vector in the
NED frame. Thea,, a and a, are the

suitable for orbit integration of GOCE, in spite
suitable for orbit integration of GOCE, in spite
of this fact that this frame is very useful
for gradiometric measurements (Rummel et al.
1993).
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Figure 1. Behaviour of the satellite state components in the NED frame, (a) is latitude, (b) longitude, (c) geodetic height,
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2-4 NAVIGATION EQUATIONS IN A
WANDER FRAME

A wander frame differs from the NED frame just
with an angle called the wander azimuth. As was
mentioned in the paper the integration in the NED
frame become unstable at the poles, because of
the convergence of meridian. The z-axis of this
frame is north-ward direction of normal to the
reference ellipsoid, the x-axis of this frame is
rotated by the wander azimuth in order to avoid
the singularities, and the y-axisis perpendicular to
the both other axes. The equation of motions of a
vehicle in the wander frame has the following
form

d _
avw =a" —(QiVVVVJrQi“;)\/W +7" (6)
where V", @" and §" are the vectors of
velocity, acceleration and gravitation in wander

frame, for expressing Q;, + ;. et us start with

O, + O =0y + 0, + o

e
= 0y, +2C; o, 7)
where 02 =[0 0 o ad o, is the
Earth's rotation rate, C; is the transformation
matrix from ellipsoidal to the wander frame, for
more detail see Jekeli (2001). The @, is written
as
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and o, =Clo,, whee C is the

transformation from the NED and wander frames.
After some simplifications and derivations we
obtain equation (9):
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where M:a(l—ez)/(l—ezsinch)z and

1
N:a/(l—ezsinch)i, a is the semi-major
axis of the reference dlipsoid and h is the
geodetic height, @ islatitude, € and € arethe

a=vgtano/(N+h) a a differentia
equation for the wander azimuth which is called
the free-azimuth approach (Jekeli, 2001). There
are two other methods for computing the wander
azimuth, like Focault and Unipolar (Kayton and
Fried, 1997). We have used the free-azimuth
approach because of its simplicity. Now we can

first and second eccentricitiesand finally o isthe
wander azimuth. In these derivations we use
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After substituting equation (10) into equation (11) and after simplification we have
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Equation (12) is the system of dynamic
equations of motion of any vehicle in a wander
frame. This set of differential equations can be
solved numericaly using any numerical
integrators, such as Runge-Kutta, Runge-Kutta-
Nystrom (Shidfar, 1994), Adams, Gauss-Jackson
or Cowell (Santos, 1994) and so on. In order to
perform simple numerical studies, the satellite is
aso considered. As we saw, because of
the singularities of integration in the NED
frame especially at the poles, we should define
the wander frame. In this section we will
show that the singularities of the NED frame
will be removed by using this frame. Let us
consider the state vector of the vehicle in one
revolution.

Figures 2(a) and (b) are the satellite’ s latitudes

and longitudes in degree, figure 2(c) is the
satellite geodetic height in meters, figure 2(d),
(e), and (f) are the velocity components of
the velocity vector in the wander frame, and
the last figure shows the behaviour of the wander
azimuth in this frame. The latitude and longitude
have the same behaviour as the results of
integration in the NED frame, but bounded

treatment for the vertical channel of h and Vj

can easily be seen, it means that the wander frame
is able to remove the singularities due to the
convergence of the meridians. The interesting
point is the variation of wander azimuth in order
to escape the singularities; this angle varied

within 160° . It may be due to the polar gaps of
the satellite orbit.
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Figure 2. Behaviour of GOCE satellite components in w-frame, (a) latitude, (b) longitude, (c) height, (d) V‘lN , (e) V‘Q’,

(f) V5 and oL wander azimuth.
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3 CONCLUSIONS

In this paper the equation of motion of a satellite
was presented in different frames of navigation.
The inertia frame is a common frame being used
by many persons working on orbit determination.
The NED and wander frames are mostly used for
aircraft navigation. Due to the meridian
convergence the NED frame is not suitable for the
polar region, because in this case singularity will
happen in the solution. However, this frame can
be employed for aircraft navigation for short
duration flights and non-polar regions. The
vertical channel of the integration usually behaves
unboundedly. In aircraft navigation external
sources are suggested for use in order to bound
this treatment, usually an altimeter is useful for
this purpose. Since a satellite passes twice over
the poles the solution of the navigation equations
becomes singular in these regions. This
singularity affects the vertical bounds of
navigation too, so that after some revolutions the
horizontal bound &so deteriorates. Our
computations show that such problems can be
removed in the integration process using a wander
frame; the wander frame introduces a wander
azimuth in order to overcome singularities due to
the meridian convergence, our computations show
variations of about 160 degrees in the wander
azimuth during orbit integration. No singularity
happens in this frame even in the polar region and
flights of long duration. It is suggested that the
wander frame be used whenever one wants to
integrate the satellite orbit in a local frame.
Although we presented the satellite’s motion in
such aframe, it is always possible to integrate the
satellite orbit in an inertial frame and transform it
in another frame. However, our main goal was to
present the wander frame ability.
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