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Abstract

A full automatic algorithm is designed to detect subsurface Qanats (sub terrains) via
Artificiadl Neural Networks .We first gained the residual gravity anomaly from
microgravity data and then applied it to a Multi Layer Perceptron (MLP) which was
trained for the models of sphere and cylinder.

As afield example, the depth of a subsurface Qanat buried under the north entrance of
the Geophysics Ingtitute is determined through MLP (trained with noisy data).
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1 INTRODUCTION

In some parts of Isfahan, ran, there are many
subsurface Qanats with a depth of few meters.
They were excavated to make subsurface
channels of water for water transmission systems
which were invented by Iranians for the first time.
But most of them have dried and been buried, so
that they are now known as dangerous objects for
the buildings and infrastructures located at the
surface on top of them, because they can act as a
trigger of down lifting of the ground. The
municipality of Isfahan is trying to detect these
subsurface Qanats to determine the risk areas of
the city for new building sites and aso old
buildings to prevent down lifting.

The best geophysical method to detect these
kinds of cavities is certainly the microgravity.
Qanats have a clear gravity anomaly due to a
significant density contrast with the host. In this
paper an intelligent method is presented to locate
the subsurface Qanats from microgravity data.
Some methods like Euler De-convolution and
Analytical Signals are very sensitive to noise and
depending on interpreter experiments, but using
the Artificial Neurad Network method the
interpreter will be able to determine the depth of
the body intelligently.

2 NEURAL NETWORKS

Neural Networks are increasingly being used in
prediction, estimation, and optimization problems.
Neural networks have gained popularity in
geophysics during the last decade.

They have been applied successfully to a
variety of problems in geophysics. Nowadays,
Neural Networks are also used in microchip
technology for computer hardware.

Recent developments in gravity measurements
and especially in microgravity tools have been

prepaid excellent conditions for data acquisition
to make better interpretation results specialy
detection of gravity sources. For these
developments, combined with higher speed data
acquisition technology, have made it possible to
detect much smaller objects like small subsurface
cavities.

The gravity data sets are naturally noisy so
that it is very hard to estimate the gravity source
depths precisely. Therefore, there an increasing
need for a fully automatic interpretation technique
that can be used to make decisions regarding the
nature of the sources in real time. The massively
parallel processing advantage of Artificial Neural
Networks makes them suitable for hardware
implementation; therefore, the detection of small
gravity sources objects will be possible more
precisely, especially for depth estimation of the
cavities. Artificial Neural Networks are part of a
much wider field called artificial intelligence,
which can be defined as the study of mental
facilities through the use of computational models
(Charniak and McDermott, 1985). There are
severa types of artificial neura networks .For
complete information covering the whole domain
of neural networks kinds, the reader is referred to
the excellent book of Fundamental of Artificial
Neural Networks by Menhgj (2000).

Summarizing their reviews, neural networks
can be divided into two main categories:
supervised  feed-forward networks  and
unsupervised recurrent  networks. In  the
supervised feed-forward, information is only
alowed to flow in one direction without any
feedbacks. These nets are supervised because
using a set of correct input-output pairs, called the
training set, small changes in the connection
weights are made in order to minimize the
difference between the actual and the desired
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output values in a distributed way. Back
propagation is the most popular supervised feed
forward network. In the unsupervised recurrent
type, the networks allow information to flow in
either direction. These models are called
unsupervised since the weight matrix is fixed at
the beginning using global information and never
changed. These networks are wuseful in
optimization applications where a certain cost
function should be maintained. One should
merely choose a neural network whose energy
function coincides with the given cost function. A
Hopfield model is the most popular unsupervised
recurrent network.

Application of neural network in microgravity
isin its early stages. We hope to develop a more
flexible intelligent method for Qanat detection by
applying other methods like Fuzzy Logic and
Genetic agorithms in the future, to develop a
near-real-time processing system.

In this paper, we explore the supervised Multi
Layer Perceptron (MLP) neural network for
Qanat location estimation.

3 TRAINING DATA

To design the MLP neural network, it is necessary
to have some available data as a set of input-
outputs for training the network. To train the MLP
with microgravity data, the problem is that if all
the measured points are applied as inputs of the
network it will have a lot of inputs and be time
consuming in training .To prevent this problem
we selected some features from microgravity data.

In this way, we prepared training data for two
models in the shape of a sphere and a cylinder
because the shape of most subsurface cavities is
approximately sphere or cylinder. The features

were calculated for these models with the
equations (1), (2) and (3) (Emile Klingele,
Alexandre Gret, 1998).

t+
R =] g()dx )
F, = xg50 2
F, =Xxg75 3

F1, F2, F3: Features calculated from gravity data;
where Flisthe...
g(x): gravity value (in micro gal) at the point with
horizontal distance of x (in meter)
xg50: x of the point where the gravity value is
50% of the maximum gravity value
Xg75: x of the point where the gravity value is
75% of the maximum gravity value.

The domain of the integral in equation 1 is
shown in figure 1. And gc is calculated from
equation (4).

9C=0yn + 0.2* (gmax - gmin) 4

Where gmi, is the minimum value of the measured
gravity and gma IS the maximum value of the
measured gravity. So gc is a definite value to find
the domain of the integral equation (1).On the
other hand in upper and lower domain of the
integral in equation (1) the value of g(x) is equal
by gc.

As has been shown in figure 2 the inputs of
Artificial Neural Network (ANN) are F1, F2,F3
and outputs are R,Z where R is the radius of the
Qanat and Z isits depth.

So the training set will be (F1, F2, F3), (R, 2).
To prepare microgravity training data we used the
equations (5) and (6) (Abdelrahman et al. 2001).

gcl

v

+*

Figure 1. Integral domain for microgravity data.
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Figure 2. Schematic of ANN with inputs and outputs.
AZ and it is clear that the outputs of the trained neural
g(x,2) = 7 7 ®) network for this inputs are the depth and radius of
(x*+27) the object.

4 . .
gnGPR Sphere or Vertical cylinder

2nGPR? Horizontal cylinder
(6)

R: Radius of the sphere or cylinder, Z: Depth of
sphere or cylinder

X: Horizontal Distance, G: universal gravity
constant (figure 3)

P: Contrast density

Figure 3.Vauesof R, Z, x in equation (3-5).

To prepare a set of training data first, the
features F1, F2, F3 are calculated for various
values of depth and radius in a domain of (Rmin,
Rmax), (Zmin, Zmax) from equation (1). So the
MLP network will be able to detect the Qanats
which have radius between Rmin, Rmax and
depth between Zmin, Zmax. For example if we
are looking for the Qanats with a radius of 1 to 3
meter at a depth of 4 to 10 meter then Zmax=10
Zmin=4, Rmax=3 and Rmin=1.

The briefly algorithm we used is that after that
the neural network was trained by this set of data,
the features (F1, F2, F3) were explored from real
gravity data and fed to the trained neural network,

4 MLP NETWORK STRUCTURE

The MLP we selected is a (3,n,2) network. It
means a neural network with 3 neurons as inputs
(F1, F2, F3) and n neurons in the hidden layer and
2 neurons as output layer, because outputs are
(R,2).

To gain the optimum vaue of the number of
neurons in the hidden layer (n) we tested MLP's
with n=3, n=4, n=5 and compared their accuracy
of estimating depth and radius .As has been
shown in figure 4 the optimum value for nisn=5.
In figures 4 and 5 the horizontal axes shows the
Epoch which means the number of iterations that
the neural network getsto its minimum error.

Unfortunately there is no exact equation for
calculating the best value of the number of
neurons in the hidden layer but there is a simple
rule that if the number of input vectors is n the
number of neurons is better to be more than
Ln(n).

5 TEST OF MLP IN PRESENT OF
NOISE AND FOR REAL DATA

After we gained the optimum value of n, we
tested the (3, 5, 2) MLP neural network with
noisy data which has 30% of noise(S/N=30%), it
has good results for both models of Qanats. It is
represented in table 1.

Also we tested the network for real data. The
microgravity data was measured compared to the
depth estimation of MLP with the Euler method
and it was very close to that. We gained the depth
of 3 meter for this Qanat.lt has less than 15
centimeter difference compared with the Euler
method. Some excavations were done there, and
showed that the real depth was very near to the
MLP output.
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Table 1. Outputs of MLP (3, 5, 2) in present of 30% noise.

Training values for R,Z Outputs of MLP (3,5,2) in present of 30% noise
Horl_zontal Sphere or Vertical Horizontal cylinder Sphere or Vertical
cylinder cylinder
R(m) Z(m) R(m) Z(m) R(m) Z(m)
1 2 117 22 112 222
1 3 1.22 3.15 1.08 3.32
2 4 2.15 4.18 2.09 4.25
2 5 2.18 5.33 214 4.28
3 6 3.25 6.25 3.17 6.12
4 8 417 8.21 4.28 8.33
5 13 5.13 13.15 5.30 13.45
6 14 6.25 14.18 6.31 13.40
6 15 6.25 15.21 6.35 145
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Figure 4. Responses of MLP network for n=3, n=4.

1
1600

13



14

10

10

Training-Blue

Training-Blue
=

Journal of the Earth & Space Physics. Vol. 35, No. 1, 2009

Performance is 0.000600208, Goal is 0

“

10

10*

1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400
2000 Epochs

n=4

Figure 4 Continued.
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6 CONCLUSIONS

In this paper a new method has been proposed for
intelligent interpretation of gravity data for depth
estimation of Qanats. The observed gravity
anomaly of the buried Qanat is assumed to be
produced by an equivalent source of cylinder or
sphere. So we tested the network for synthetic
data of the two models of sphere and cylinder in
the presence of noise and saw the results have
good adaptation to the actual values. For atesting
of the field data we measured the gravity points
on the top of a subsurface Qanat in the north
entrance of the Geophysics Institute and fed the
data corrected to the network to see the depth
estimation by the network it was very near to the
real depth of subsurface Qanat.
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