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Abstract 
The high-degree ellipsoidal Stokes integral (Ardestani and Martinec, 2003a) is used to compute the 
geoidal heights over a territory in Iran. To compute the low-degree part of the geoidal heights a global 
geopotential model (EGM96) is used and for the high-degree part, the solution of the ellipsoidal Stokes 
boundary-value problem (BVP) in the form of surface integral is applied.  

Therefore the geoidal heights con be calculated for a part of Iranian territory where the data is 
available. 
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1 INTRODUCTION 
Martinec and Grafarend (1997) formulated the 
ellipsoidal Stokes BVP and found its solution in a 
closed form as an integral over the Earth's 
surface. However, due to the lack of global 
coverage of terrestrial gravity survey, the surface 
integral has to be truncated to the near-zone and 
far-zone in practical applications. 
The near-zone contribution has been treated by 
Ardestani and Martinec (2000). The far-zone 
contribution is computed by the method 
introduced by Ardestani and Martinec (2003b). 

The truncation of the integral may cause a 
serious loss of long-wavelength information on 
the geoid. This was a crucial problem before the 
satellite epoch.  

Nowadays, we involve the information on 
gravitational field coming from satellite 
observations into the geoid determination in order 
to recover the last parts of information. 
 
2 ELLIPSOIDAL STOKES BOUNDARY-
VALUE PROBLEM 
We consider the ellipsoidal coordinates {u,β,λ} 
(Heiskanen and Moritz, 1967), where β is the 
reduced co-latitude, λ is the longitude and E is the 
linear eccentricity, 
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The ellipsoidal Stokes BVP can be formulated 

as follows. Determine the disturbing potential 
T(u,Ω), Ω=(β,λ) on and outside the reference 
ellipsoid of revolution u=b so that: 
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where f(Ω) is assumed to be a known square 
integrable function (gravity anomalies) and c is a 
constant. The spectral form of the solution to this 
BVP has been constructed by Martinec and 
Grafarend (1997): 
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where T is the disturbing potential, jmf  are the 
expansion coefficients of f(Ω) to be determined 
from boundary condition (2) and α(u) has been 
defined by Martinec and Grafarend (1997, 
equation 13), 
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The solution of the problem at the point bou =  
can be expressed in the integral form (ibid., 
equation 47): 
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where Ω is the full solid angle, χ is the angular 
distance between the directions Ω and Ω', S(χ) is 
the spherical Stokes function (Heiskanen and 
Moritz, 1967) and ),(Sell Ω′Ω  is the ellipsoidal 
Stokes function(Martinec and Grafarend, 1997). 
Note that function ),(Sell Ω′Ω  has the same 
degree of singularity at the point as does function 
S (χ). We now split the disturbing potential T into 
a low-degree reference potential ),b(T 0

ell
l Ω  and 

a higher-degree potential ),b(T 0
l,ell Ω . Likewise, 

the gravity anomaly f(Ω) is split into a low-degree 
part )(fl Ω and a high-degree part )(f l Ω . The 
low-degree part of the disturbing potential will be 
represented in the spectral form, 
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which results from equation (4) for bou = . The 
upper limit l in the summation over angular 
degree j represents the cut of degree of a reference 
potential. To compute the high-degree part 

),b(T 0
ell Ω , we use the integral representation 

(6). 
We split the spherical and the ellipsoidal 

Stokes functions to the low-degree and high-
degree parts and use the orthogonally property of 
the spherical harmonics (Heiskanen and Moritz, 
1967), and we obtain 
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where )(Sl χ  and )(S l,ell χ  are the high-degree 
parts of the spherical and ellipsoidal Stokes 
functions, respectively. Because of numerical 
computations, it is convenient to decompose the 
integral(8) into the near-zone contribution 
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,l 0 Ωχ  and the far-zone contribution 
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3 NEAR-ZONE CONTRIBUTION 
The near-zone contribution of the high-degree 
part of the disturbing potential is determined by 
the integral in equation (8) but with the 
integration domain shrank to the integration cap 

0Cχ  of radius 0χ  that surrounds the computation 
point χ=0: 
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To remove the singularity of the Stokes functions 
at the point χ=0, we write 
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and finally we have (Ardestani and Martinec 
2003a) 
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4 FAR-ZONE CONTRIBUTION 
The far-zone contribution to integral (8) has the 
following form 
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Following the same strategy introduced by 
Ardestani and Martinec (2003b), the integral can 
be considered as a spherical Stokes integration 
extended by the term related to ellipsoidal 
contribution ),(Se ell2

0 Ω′Ω ; we now split this 
integral as follows, 
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Taking the expression defined by Heiskanen and 
Moritz (1967) into account for the first part of the 
right-hand side of equation (14) we obtain 
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where ),b(T 0
,l 0 Ωχ−π is the disturbing potential 

of the far-zone contribution, )(Q 0
l
j χ  are  the 

Molodenskij truncation coefficients(Molodensij et 
al. 1960) and jmf  can be determined by a global 
geopotential model (GGM) (Heiskanen and 
Moritz, 1967). 

To compute the second part of the right-hand 
side of equation (15), we introduce the new 
function ),(S~ l,ell Ω′Ω  as follows, 
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Expanding function ),(S~ l,ell Ω′Ω  in a series of 
spherical harmonics we obtain 

).(Y)(Yq),(S~ jmjm
1lj m

l
jm

l,ell Ω′Ω=Ω′Ω ∗
∞

+=
∑∑   (16) 

Multiplying two sides of equation (16) in  

∫ ∫Ω′
∗ Ω′Ω′ d)(Y 1m1j  

where Ω′  is the full solid angle and keeping in 
mind the orthogonally property of the spherical 
harmonics we have, 
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Now by substituting equation (17) into the 
second part of the right-hand side of equation (15) 
and expanding the )(f Ω  in a series of spherical 
harmonics and taking into account the 
orthogonally property of the spherical harmonics 
we finally obtain, 
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where )(Yq jmjm Ω  can be computed through 
equation (17) by solving the left-hand side of 
equation numerically and then solving the system 
of linear equations. 
 
5 NUMERICAL RESULTS 
The first step in  geoid computation is providing 
the necessary data, preferably Helmert gravity 
anomalies. These anomalies can be computed 
from free-air anomalies including the topography 
corrections. 

These necessary data have been obtained from 
the Iranian National Cartography Center (NCC) 
for more than 6000 points distributed over Iranian 
territory. The data have been arranged in a grid 
(2.5', 2.5') suitable for use as the input to 
computer code. 

Meanwhile the gap between the data are filled 
by interpolation. The other set of data that can be 
used in the code is geopotential gravity models 
such as EGM96 or EGM2000 which are 
downloaded from the internet. 

Using EGM96 for jmf  in equation (7) and 
Bruns formula,  
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the low-degree part of geoidal heights are 
computed. Then the near-zone contribution of 
geoidal heights are obtained through equation 
(12) by considering a cap around the 
computational point by the radius equal to 6 
degree. 

For using this equation (12) the parameters 
such as zero-degree Molodenskej ( 0Q ) and Paul 
coefficients ( 0jR ) are computed in different 
subroutines in computer code. The Helmert  
gravity anomalies are substituted instead of 
( ( ) )'(f,f ll ΩΩ ). 

For the far-zone contribution equation (18) 
and equation (19) are used. In equation (18) the 
new coefficients l

jmq  are obtained by solving the 
linear system of equation (17). 

 

Adding the low-degree to the high-degree 
part, the near-zone and the far-zone contributions 
the geoidal heights are computed and shown in 
figure 1. By using the digital terrain model of Iran 
the topographical curves are also demonstrated in 
figure 2. There is a good spatial correlation 
between figure 1 and the field figure 2. 

The accuracy of the program can be tested by 
the method expressed in Ardestani and Martinec 
(2000). 

 
 

6 CONCLUSIONS 
The geoidal heights are computed through high-
degree ellipsoidal Stokes integral efficiently. The 
close correlation between topographical and 
geoidal heights show the correctness of the 
computations implicitly. However, by expanding 
the data file covering the whole territory of Iran 
and some neighboring countries the geoidal 
heights could be obtained more accurately. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The geoidal heights (cm). 
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Figure 2. The topographical heights (m).  
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