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Abstract 
The least-square minimization approaches for determination of depth, shape and amplitude coefficient 
expressed by Abdolrahman et al. (2001) for sphere and horizontal cylinder is used for rectangular prisms 
as synthetic models with and without random noises. The method is also applied for real sources 
producing micro-gravity data .The capability of the method is tested and discussed in this paper. 
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1 INTRODUCTION 
Simple geometrically models such as spheres and 
cylinders have usually been considered in gravity 
interpretation. 

In most cases the shape of the model is 
assumed and the depth variable may be obtained 
through different methods such as least-square 
minimization (Abdolrahman et al., 1991). 

Determination of the shape by least-square 
minimization is also expressed by Abdolrahman 
et al. (1995), Abdolrahman and El-Arabi, (1993) 
and Abdolrahman et al. (2001). 

The method used in the last paper will be 
tested against rectangular prisms and real sources. 
 
2 LEAST-SQUARE MINIMIZATION 
The gravity anomaly expression for a horizontal 
cylinder is given by Nettelton, (1976), 
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Where 2RG2k ρπ= , q is the shape factor 
and is 1 for a horizontal cylinder (Abdolrahman et 
al., 1989), G is the gravitational constant, ρ is the 
contrast density and R is the radius of the 
cylinder. 

Clearly )q,Z,X(g i  attains its maximum at 
X=0. The maximum value is where m is equal to 
1 for horizontal cylinder. 
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where m is equal to 1 for the horizontal cylinder. 

Using equation (2), equation (1) can be 
written in a normalized form as, 
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Taking the logarithm of the both sides of 
equation (3) we obtain 
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Equation (4) gives the following value at AXi = , 
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Substituting equation (5) in equation (4), we 
obtain the following nonlinear equation in the 
depth (Z) we have, 
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Where, 
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The unknown depth (Z) in equation (6) can be 
determined by minimizing the squared differences 
between observed and calculated anomalies, 
(Abdolrahman et al., 2001), 
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Where )X(L i  is the logarithm of the 
normalized ( )(max)g/)q,Z,X(g i  observed gravity 
anomaly at iX . 

Setting the derivative of )Z(ϕ  to zero with 
respect to Z yields, 
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Equation (9) can be solved for Z using 
numerical methods. 

Substituting the computed depth cZ  as a 
fixed parameter in equation (5), we obtain 
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Again applying the least-squares method the 
unknown q (shape factor) can be obtained from 
The following equation (Abdolrahman et al. 
2001),  
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Substituting the computed depth ( cZ ) and shape 
factor ( cq ) in equation (1) as fixed parameters we 
have, 
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Where )X(D i  is the observed gravity data. 
Finally applying the least-squares method to 
equation. (13) yields, (Abdolrahman et al., 2001), 

∑

∑

=

=

+

+
= N

1i
q2

c
2
i

c

N

1i
q2

c
2
i

i

c

c

c

)ZX(
Z

)ZX(
)X(D

k                                     (14) 

Then Abdolrahman et al. (2001) proposed 
measuring the correctness of the fit between the 
observed and the computed gravity data for each 
A value. 
 
3 PROCEDURES 
Applying the above method a computer code in 
MATLAB is prepared. 

Approximating the section of a horizontal 
cylinder as a rectangular prism on a profile along 
the cylinder the effects of the cylinders are 
computed by Talwani's (1959) method and then 
are contaminated by different amounts of random 
noises through NORMRND commend  
(MATLAB commend for generating random 
numbers from normal distribution) and considered 
as observed anomalies. 

Five points of profile around the maximum 
value (peak of the anomalies) are selected. 

The equation (2) is then minimized for Z 
value by FMINUNC (MATLAB commend which 
finds the minimum of a function of several 
variables) considering an initial value for depth 
( 0z ) and q=1. 

Having cz , cq  and ck  the computed gravity 
anomalies are obtained through equation (7). 

The squared differences between the 
observed and computed values (Sum) are 
calculated and the results are plotted. 
 
4 RECTANGULAR PRISMS 
We used the method expressed in the previous 
section for rectangular prisms considering the 
similarity of the shapes in two dimensional cases 
with horizontal cylinders. 

The first model is demonstrated in Figure 
(1b). 

The computed gravity effects are obtained 
through equation (6) for different sets of observed 
gravity anomalies (figure 1a). The results for 
different A and 0Z  are shown in table 1. 

The second model is shown in figure 2b and 
the observed and computed gravity effects in 
figure 2a. 

The results are reflected in table 2. In this 
deeper model the depths belong to the top of the 
rectangular prism as the former depths (table 1) 
show the center of the prism.  

In both models of figures 1 and 2 the 
computed depths do not depend on the initial 
guesses of depths. 

The models in figures 3b, 4b are the  
same as figures. 1b and 2b but with the noise  
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(10 percent) added to the observed gravity  
values. 

The results of these models are demonstrated 
in tables 3 and 4. 

Two complex models are considered in 
figurs. 5b and 6b for testing the capability of the 
method and the results are demonstrated in tables 
5 and 6 respectively. 

 
 

Table 1. Depths and shape factor for model 1. 

)m(Z0  A  )m(zc  cq  ck  

)m.Gal(μ  

Sum  
)Gal(μ  

10 1 19.56 0.994 1618.04 1992.29 

20 1 19.56 0.994 1618.04 1992.29 

5 1 19.56 0.994 1684.04 1992.29 

5 2 19.56 0.994 1618.04 1992.29 

 
 

Table 2. Depths and shape factor for model 2. 

)m(Z0  A  )m(zc  cq  ck  

)m.Gal(μ  

Sum  
)Gal(μ  

15 1 23.2 0.996 1284.38 633.29 

25 1 23.2 0.996 1288.49 633.312 

10 1 23.2 0.996 1286.82 633.292 

20 2 23.2 0.996 1286.82 633.292 

 
 

Table 3. Depths and shape factor for model 3. 

)m(Z0  A  )m(zc  cq  ck  

)m.Gal(μ  

Sum  
)Gal(μ  

5 1 22.58 1.003 2011.812 1584.981 

10 1 22.578 1.003 2011.653 1584.977 

20 1 22.578 1.003 2011.807 1584.981 

20 2 22.578 1.003 2011.807 1584.981 

 
 

Table 4. Depths and shape factor for model 4. 

)m(Z0  A  )m(zc  cq  ck  

)m.Gal(μ  

Sum  
)Gal(μ  

5 1 33.64 1.00 1732.39 207.89 

5 1 33.64 1.00 1732.39 207.89 

10 1 33.595 0.997 1732.46 207.85 

20 3 33.64 1.00 1697.17 207.89 
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Table 5. Depths and shape factor for model 5. 

)m(Z0  A  )m(zc  cq  ck  

)m.Gal(μ  

Sum  
)Gal(μ  

5 1 25.415 1.0022 3410.436 2859.368 

10 1 25.419 1.0024 3410.22 2859.462 

20 1 25.415 1.002 3410.396 2859.367 

20 2 25.415 1.0022 3410.396 2859.367 

 
 
 

Table 6. Depths and shape factor for model 6. 

)m(Z0  A  )m(zc  cq  ck  

)m.Gal(μ  

Sum  
)Gal(μ  

5 1 24.755 1.001 2375.948 1547.038 

10 1 24.753 1.001 2374.019 1547.011 

20 1 24.754 1.001 2375.22 1547.028 

20 2 24.754 1.001 2375.22 1547.028 

 
 
 

In all models the sum-squared differences 
between the observed and computed values (Sum) 
are quite big but still the computed depths ( cz ) 
and shape factors ( cq ) are acceptable. 

It is clear that the results are quite 
independent of the initial guess (at least up to four 
times the least guess and for shallow depths) for 
depth ( 0Z ) and A which is a great capability of 
the model and proves the excellent ability of the 
computer program. 
 
5 FIELD EXAMPLES 
A micro-gravity survey detecting the cavities and 
sink-holes has been carried out in the power plant 
close to Hamedan (Iran). 

One of the anomalies detected is chosen 
(figure 7) and a Bouguer gravity profile (AB) is 
considered. 

To have an initial guess for initial depth and 
also testing the results the Euler depths of the 
anomaly computed through GEOSOFT is also 
demonstrated in figure 8. 

The results for different initial depth and A 
are as follows, 

The observed and computed gravity are 
reflected in figure 9. 

As the method is actually described for a 
simple shape such as a cylinder, there is a 

relatively big difference between the observed 
and computed curves but at the same time the 
computed Z seems to be quite reasonable. 

The second profile is shown in the Bouguer 
anomaly map of another cavity in the same power 
plant (figure 10). The Euler depths are 
demonstrated in figure 11. 

The method is used and the results for 
different 0Z  and A are reflected in table 8. 

The depths in both anomalies are quite 
appropriate and approved by other methods and 
drilling. 

Again although there is a difference between 
observed and calculated curves in figure 6 at least 
the computed depth is quite reasonable. 
 
6 CONCLUSION 
The method is quite effective particularly for 
depth and for shape factor determination in spite 
of the probable big sum squared difference in real 
examples. 

The independency of the results to the  
initial guess of depth is a great advantage of the 
method. 
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Table 7 

)m(Z0  A  )m(zc  cq  ck  

)m.Gal(μ  

Sum  
)Gal(μ  

5 1 4.83 1.01 3279.867 1516.078 

10 1 4.83 1.018 3279.137 1516.02 

10 2 4.83 1.018 3279.137 1516.03 

 
 

Table 8 

)m(Z0  A  )m(zc  cq  ck  

)m.Gal(μ  

Sum  
)Gal(μ  

5 1 23.093 0.988 2828.413 1102.82 

15 1 23.139 0.992 2900.322 1102.86 

15 0.5 23.139 0.992 2900.322 1102.862 
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Figure 1. (a) Observed and computed gravity anomalies (μGal). (b) Rectangular prism. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. (a) Observed and computed gravity anomalies (μGal). (b) Rectangular prism. 
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Figure 3. (a) Observed and computed gravity anomalies (μGal). (b) Rectangular prism. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. (a) Observed and computed gravity anomalies (μGal). (b) Rectangular prism. 
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Figure 5. (a) Observed and computed gravity anomalies (μGal). (b) Rectangular prism. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. (a) Observed and computed gravity anomalies (μGal). (b) Rectangular prism. 
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Figure 7. Bouguer anomalies (mGal). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Euler depths (m). 
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Figure 9. Observed and computed gravity anomalies (mGal). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Bouguer anomalies (mGal). 
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Figure 11. Euler depths (m). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Observed and computed gravity anomalies (mGal). 
 


