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Abstract 
The radon transform has a wide application in seismic processing for each project in different 
areas. Multiple attenuation is mostly summarized in the use of radon analysis in practice, 
especially in marine data processing. The definition of mute function is the major challenge in 
parabolic radon transform. In this paper, a method for segmentation of the radon transform by 
fuzzy inference system is introduced to separate energy parts in the radon domain. We applied a 
fuzzy inference system based on the property of energy distribution and its attribute in the radon 
domain. The result of clustering is the partitioning of the radon domain in three major classes: 1- 
random noise, 2- multiple, and 3- primary and multiple. The result of applying the new method on 
real data has shown the applicability of the new method for separation of multiple class from other 
classes that can assist the processor to define the mute function in the absence of other events in 
the radon domain. 
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1. Introduction 
The Radon Transform (RT) as a strong tool 
has widely used in the numerous science and 
engineering applications. It has an extended 
use in seismic processing with different basis 
function (linear, parabolic, hyperbolic, apex 
shifted versions). These applications include 
the attenuation of multiples (Seher, 2017), 
ground roll attenuation and trace 
interpolation (Gholami & Zand, 2018), 
elimination of free surface multiples 
(Hokstad and Sollie, 2006), random noise 
attenuation (Zhang et al, 2021), simultaneous 
source separation (Akerberg et al., 2008; 
Trad et al., 2012; Ibrahim and Sacchi, 2014), 
automatic stacking velocity estimation 
(Wang, 2016).  
One of the main applications of the RT is 
multiple attenuation that is one of the key 
step in marine seismic processing and 
moveout discrimination as a property to 
attenuate multiples in the CDP domain.  
The parabolic RT was introduced by 
Hampson (1986) to map different events in 
the CMP domain to the radon domain. 
Hampson exerted the parabolic radon 
transform to NMO-corrected gathers. 
Primaries in parabolic RT map to zeros 
move-out part and multiples map to non-zero 
moveout part of radon domain. To increase 
the efficiency of parabolic (hyperbolic) RT 

and easily picking multiple (primary) areas in 
the RT domain, some modifications are 
performed on standard parabolic (hyperbolic) 
RT.  
In the case of presenting the gap in CDP, 
gather interpolation and/or aperture extension 
are needed that must use sparse RT. Sacchi 
and Ulrych (1995) take the benefit of the 
sparse RT in the frequency domain by means 
of Bayes rule using a Cauchy form 
Probability-Density Functions (PDFs). Trad 
(2003) presented an extension of the standard 
RT as apex-shifted RT to handle the effect of 
variable apex locations in the offset 
dimension.  
The main problem when using RT is 
identifying signal portion from the noise. 
Some authors try to improve RT to reach 
better signal to noise separation in the RT 
domain. In modified version of RT processor 
one can define mute function with higher 
accuracy to avoid signal attention after 
applying reverse RT. 
Gholami and Zand (2018) presented a fast 
algorithm for a three-parameter RT based on 
shifted hyperbolas. They also used split 
Bregman iteration and generalized Fourier 
Slice Theorem for the sparse solution of the 
problem and the associated inverse/adjoint 
forward transforms that led to an efficient 
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algorithm for effective decomposition of 
long-offset seismic data. Abedi et al. (2018, 
2019) used a three-parameter RT in VTI 
media that is a time-independent version that 
can better localized different seismic events; 
it is also more accurate, especially in the 
presence of vertical heterogeneity. 
Zarei and Hashemi (2019, 2021) introduced a 
new approach of standard RT by the name of 
image RT for better discrimination of 
multiple from primary in radon domain. They 
used edge attributes and additional 
mathematical properties in the radon domain 
to achieve a new section for importing to the 
RT operator. Using this approach, only 
multiple events move to the radon domain 
and selecting multiple areas are easier than 
conventional RT. 
In this paper, we introduced a new approach 
for classification of energy in the radon 
domain using Fuzzy Inference System (FIS) 
to be able to make partitions in the radon 
domain for different energy parts. This 
method can be applied on different versions 
of RT transform for partitioning of radon 
domain. Results of applying this method on 
synthetic and real data have a surprised 
segmentation of signal and noise in radon 
domain. 
 
2. Methodology 
The main goal in all of the RT versions is the 
separation of signal from noise in the radon 
domain. The direct forward parabolic radon 
transform is defined as Equation (1) that is 
commonly used for multiple attenuation;  

𝑚(𝑞. 𝜏) = ෌ 𝑑(𝑥௡. 𝑡 = 𝜏 + 𝜃𝑥௡
ଶ).

ே

௡ୀଵ
       (1) 

where 𝑑(𝑥௡. 𝑡) is the data in the offset(x)-
time (t) domain, N is the number of traces, θ 
is the ray parameter or slowness and 𝑚(𝑞. 𝜏) 
is the data in the parabolic radon domain. In 
the parabolic radon domain, primaries 
transform to the near-zero residual moveout 
axis and multiples transform into the higher 
values of the residual moveouts. 
Nevertheless, separating multiple and 
primary areas in the radon panel is very acute 
and usually depends on the prior knowledge 
of the processor.  
The definition of mute function is critical 
when the different types of multiple exist on 
data or area of surveying that contains 

complex geology. One major problem when 
working with RT is changing the mute 
function between different processors that 
affects the final result, especially the 2D 
vintage. 
 
2-1. Fuzzy Logic and Fuzzy System 
Fuzzy logic was introduced by Zadeh in 
1965, in which the concept of fuzzy variables 
versus the crisp variables is the most 
important achievement. The fuzzy logic is a 
platform to use the linguistic variable and 
knowledge-based information as 
mathematical operations. The fuzzy logic 
developed in a wide range of engineering 
applications for control and operating 
systems. The application of fuzzy logic and 
the fuzzy system has great advantages and 
added value especially in the interpretation of 
data because there are many variables in 
interpretation that are dependent on the scene 
of interpreter and change the user.  
A Fuzzy Inference System (FIS) is the 
process of formulating from input data to 
output data using fuzzy theory and is mainly 
based on the use of linguistic/data-based 
rules. In a fuzzy system, each data can belong 
to a group and its membership will be 
between zero and one. Each FIS is identified 
using the membership function. Membership 
functions have different forms, such as 
Gaussian, triangular, trapezoidal, sigmoid, S-
shaped, Z-shaped, etc. Each FIS contains 
three main parts: 1- Fuzzifier, 2-Inference 
machine and 3-Defuzzifier, and based on 
these properties two main types of FIS are 
introduced: Mamdani FIS (Mamdani and 
Assilian, 1975) and Sugeno FIS (Takagi and 
Sugeno, 1985; Sugeno and Kang, 1988). 
Fuzzy system and fuzzy logic have a wide 
range of application in seismic data 
processing and interpretation. Aminzadeh 
and Wilkinson (2004) reviewed the 
application of neural network and fuzzy logic 
in seismic object detection. They focused on 
a rule-based neural network to combine 
different seismic attributes and effectively 
bringing data with interpreter’s knowledge to 
reduce the exploration risk. 
Hashemi et al. (2008) presented a new 
technique based on the unsupervised 
clustering with a fuzzy GK clustering 
algorithm to detect the seismic random noise 
in pre and post stack data. They used an 
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adaptive distance norm to discover centers of 
ellipsoidal clusters and create a partition 
matrix which defines the soft decision 
boundaries between seismic events and 
random noise. 
Hadiloo et al. (2018) compared and evaluated 
the capability of two unsupervised methods, 
Fuzzy c-means (FCM) and Gustafson Kessel 
(GK) and one supervised method, Adaptive 
Neuro-Fuzzy Inference Systems (ANFIS) in 
revealing the presence of a channel system. 
Chongjin et al. (2020) used the guided FCM 
clustering method for joint inversion of three 
different physical properties of rocks 
(gravity, magnetic, seismic) of the subsurface 
model. In this approach, he received 
clustering results that were steady with the 
geophysical properties and achieved more 
reliable results after interpretation.  
In below, we will review the Mamdani FIS 
and FCM clustering’s that are used for 
generating FIS for the classification of 
energy in the radon domain. 
 
2-2. Fuzzy C-Means Clustering 
FCM clustering (Dunn, 1973) as 
unsupervised clustering have wide 
application in seismic interpretation and 
processing. The fuzzy c-mean clustering is an 
unsupervised clustering algorithm that allows 
us to build a fuzzy partition from data. The 
algorithm depends on a “c” parameter (2) 
which corresponds to the degree of fuzziness 
of the solution. Large values of “c” will 
become less sharp in the classes and all 
elements are inclined to be the property of all 
clusters. The solutions of the optimization 
problem are controlled by the parameter “c”. 
That is, different selections of “c” will 
typically eventuate to different partitions. 
 Let 𝑿 = {𝑥ଵ, … , 𝑥௡} be a set of given data, 
where each data point 𝑥௞(𝑘 = 1,2, … , 𝑛) is a 
vector in 𝑹௣, 𝑼௖௡be a set of real 𝑐 × 𝑛 
matrices, and c be an integer, 2 ≤ 𝑐 < 𝑛, 
then, the fuzzy c-partition space for X is the 
set: 
 

𝑴௙௖௡ = {𝑼 ∈ 𝑼௖௡: 𝑢௜௞  ∈ [0,1], ∑ 𝑢௜௞ =௖
௜ୀଵ

1, 0 < ∑ 𝑢௜௞ < 𝑛௡
௞ୀଵ }                                 (2) 

 

where 𝑢௜௞ is the membership value of 𝑥௞ in 

cluster 𝑖(𝑖 = 1, … , 𝑐). 
The aim of the FCM algorithm is to discover 
an optimum fuzzy c-partition and 
corresponding prototypes minimizing the 
objective function: 

𝑱(𝑼, 𝑽; 𝑿) = ∑ ∑ (𝑢௜௞)௠‖𝑥௞ − 𝑣௜‖
ଶ௖

௜ୀଵ
௡
௞ୀଵ        (3) 

where 𝑽 = (𝑣ଵ, 𝑣ଶ, … , 𝑣௖) is a matrix of 
unknown cluster centers (prototypes)𝑣௜ ∈ 𝑅௣, 
‖. ‖ is the Euclidean norm, and the weighting 
exponent 𝑚 in [1, ∞) is a constant that 
affects the membership values. 
To minimize the rule 𝑱 and under the fuzzy 
constraints defined in Equation (2), the FCM 
algorithm is defined as an intermittent 
minimization algorithm as follows. Choose 
values for 𝑐, 𝑚, and 𝜀, a small positive 
constant; then, produce randomly a fuzzy c-
partition 𝑈଴ and set iteration number 𝑡 =  0. 
A two-step iterative progress works as 

follows. Given the membership values 𝑢௜௞
(௧), 

the cluster centers 𝑣௜
(௧)

 ( 𝑖 =  1, … , 𝑐 ) are 
calculated by: 

𝑣௜
(௧)

=
∑ ቀ௨೔ೖ

(೟)
ቁ

೘
௫ೖ

೙
ೖసభ

∑ ቀ௨
೔ೖ
(೟)

ቁ
೘

೙
ೖసభ

                                    (4) 

Given the new cluster centers 𝑣௜
(௧), update 

membership values 𝑢௜௞
(௧) 

𝑢௜௞
(௧ାଵ)

= ൦∑ ൭
ቛ௫ೖି௩೔

(೟)
ቛ

మ

ቛ௫ೖି௩
ೕ
(೟)

ቛ
మ൱

మ

೘షభ

௖
௝ୀଵ ൪

ିଵ

          (5) 

The process stops when|𝑈௧ାଵ − 𝑈௧| < 𝜀, or a 
predefined number of iterations is touched. 
 
2-3. Mamdani FIS 
The most important part of fuzzy inference 
methods is the type of membership function 
(MF) and the method of their 
implementation. In the Mamdani FIS 
method, the output of the fuzzy function is a 
fuzzy system. After the aggregation process, 
a fuzzy return system is used for each output 
variable. In the Mamdani method according 
to Figure 1, the minimum operator is used 
(Mamdani and Assilian, 1975). 
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Figure 1. Graphic representation of Mamdani fuzzy inference method using multiplication and maximum operator (Jang 

et al., 1997). 
 

In this study, we will use FCM clustering as 
an initial clustering to achieve Mamdani 
based fuzzy system to divided energy on 
radon domain to different parts. 
 

3. Application 
For initial clustering using FCM, we used 
Image radon transform (Zarei and Hashemi, 
2019) of input data and entropy as an 
attribute for accurate clustering. 
The number of rules is critical and must be 
greater than the number of clusters that exist 
on data. The number of clusters in the radon 
domain is 3 that contain random noise, 
primary and multiple events. Therefore, the 
number of clusters for FCM clustering must 
be greater than 3 and after testing, we chose 
10 clusters for FCM Clustering.  
We applied this method on synthetic and real 
data with different range of noise to show the 
ability of this method to partition radon 
domain to the different energy parts. A 
synthetic CMP gather is generated using a 
Matlab code. It contains primary and 

multiple events. The model features are listed 
in Table 1. The sample rate is 2 (ms) and the 
offset variety is 12.5 (m) to 3025 (m). A 
zero-phased Ricker wavelet with central 
frequency 20 (Hz) is used to generate a 
seismogram. The data, its corresponding 
NMO corrected gather (of input CMP 
gathers) and its parabolic radon transform are 
shown in Figure 2. 

 

Table 1. The properties of synthetic model. 

Event No. TWT (ms) Velocity (m/s) 

1 500 1500 

2 1800 2400 

3 2800 2800 

4 3200 3200 

 
After applying the presented method on 
synthetic data as shown in Figure 3, the 
energy distribution in RT domain well define 
and multiple parts have been separated as a 
single class. 

 

 
                                                       (a)                           (b)                             (c) 

Figure 2. Synthetic data (a), NMO Gather (b) and Radon Transform of NMO gather (c). 
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                    (a)                                 (b)                                     (c)                                  (d) 
Figure 3. (a) Initial RT, (b) the class including the multiple parts, (c) the class including primary and multiple and (d) the 

class including random noise. The color bar presents the amplitudes. 
 
Another example for testing this method is 
data from Gulf of Mexico. Figure 4 shows 
NMO gather from the Gulf of Mexico that 
contains multiples and its parabolic RT. 
The input of FCM clustering is the radon 
transform of data shown in Figure 4  
and some attributes that are extracted from 
radon panel. As we expected, the output of  
this clustering contains 10 clusters for which 

each cluster consists of different parts of  
the radon panel. There are some classes  
that include primary and multiple 
simultaneously and some classes contained 
random noise, and finally, there is some  
class that only contains multiple. In all 
clusters, there is some random energy that is 
no problem for the definition of the target 
area. 

 

 
                                       (a)                                                                         (b) 
Figure 4. NMO Corrected Gather from Gulf of Mexico (a) and its parabolic radon transform (b). The color bar represents 

the amplitudes. 
 



130                             Journal of the Earth and Space Physics, Vol. 47, No. 4, Winter 2022 

 

 
Figure 5. The fuzzy rule that extracted from data based on energy distribution in the radon domain. 

 

Figure 5 shows the fuzzy rule obtained after 
clustering using FCM clustering. There are 
three main classes, some of which are the 
redundant rules. This redundant rules can be 
reduced and the accuracy of clustering will 
be increased. 
The different output of FIS shown in Figure 6 
including three different classes exist on 
radon domain. Using this approach to 
segment radon transform processor can easily 
define the mute function for multiple 
attenuations in the absence of the primary 
event. 
 
4. Conclusions 
In this paper, we review the parabolic  
radon transform and its limitation  
to separation of the multiple energy  
from primary in the radon domain. It  
also used the advantage of the fuzzy system 

to the partitioning of radon domain. A  
Fuzzy system is a tool for managing  
data based on data properties and can be  
used for segmentation of radon domain  
for signal and noise parts to help the 
processor for the definition of the mute 
function. 
A new FIS are generated based on radon 
transform and some attributes are extracted in 
the radon domain as an input for FIS. The 
output of the new FIS included three main 
classes: 1- random noise, 2- multiples, and 3- 
primary and multiple. 
The result of applying this new method to 
synthetic and real data shows that the 
segmentation of radon domain has a great 
benefit to define the mute function in absence 
of the primary event. Thus multiple events 
can be modeled easily and can be subtracted 
from the original data. 

 

 
                         (a)                                    (b)                                     (c)                                     (d) 

 

Figure 6. Initial radon transform (a), FIS output cluster including multiple energy (b), FIS output cluster including 
multiple and primary energy (c) and FIS output cluster including random noise (d). The color bar represents 
the magnitude of attributes. 
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