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Abstract 
The behavior of ion acoustic wave (IAW) is studied in an electron-ion plasma consisting of cold 

ions and nonextensive electrons. In this study, the reductive perturbation method is used and the 

new point is the non-uniformity of the nonextensive parameter in the media. We want to achieve 

more realistic results of ion acoustic wave behavior by better using the reductive method. In fact, 

the variation in the behavior of ion acoustic wave when it encounters the nonextensity perturbation 

region is examined. Perturbation area is a part of plasma where the nonextensivity changes 

slightly. Therefore, the presence of nonextensivity is introduced as the first order perturbation and 

the phase velocity is applied as a fixed parameter in the calculations. The modified KdV (mKdV) 

equation is derived to describe the behavior of the ion acoustic wave propagation in this model. 

The obtained equation clarifies the change of the soliton profile when moving in all through the 

perturbation area. Our numerical results show that part of ion acoustic waves propagates as 

oscillatory shock wave in the perturbed area. The results of this investigation can be helpful for 

understanding the behavior of ion acoustic waves in an astrophysical environment and space 

plasmas with varying nonextensivity (Qiu et al., 2020; Silva et al., 1998; Lima et al., 2000).  
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1. Introduction 

One of the interesting branches in plasma 

physics is the study of linear and nonlinear 

propagation of ion acoustic waves (Ikezi et 

al., 1970; Schamel, 1980; Longren, 1983; 

Nakamura et al., 1993; Barkan et al., 1996; 

Kourakis & Shukla, 2003; Lee, 2009; 

Dubinov & Kolotkov, 2012; Verheest et al., 

2013; Sultana, 2018; Dubinov et al., 2021; 

Liu et al., 2018). There is a variety of reports 

about non-uniform plasmas and many 

authors have studied them in different ways 

(Asano, 1974; John & Saxena 1976; Gell & 

Gomberoff, 1977; Rao & Varma, 1977; 

Goswami & Sinha, 1976; Talbot et al., 1980; 

Shukla & Mamun, 2002; Cousens et al., 

2012; Chaudhuri et al., 2019). Talbot et al. 

(1980) provided an expression for the 

thermophoretic force by considering the non-

uniformity in the velocity distribution of a 

neutral gas. Shukla & Mamun (2002) 

considered the non-uniformity of the plasma 

as the density gradient of unperturbed 

number densities and studied the dispersion 

properties of electrostatic and 

electromagnetic waves. One of the theoretical 

methods to study the behavior of ion acoustic 

waves in plasmas is the reductive 

perturbation method (Washimi & Taniuti, 

1966). In this method, independent variable 

𝜉 = 𝜀(𝑥 − 𝜆𝜏) is used in which the phase 

velocity (𝜆) is assumed constant. Although 

the results of many studies show that 𝜆 is 

dependent on the plasma parameters 

(Schamel, 1973; Roy & Sahu, 2020; Singh et 

al., 2018; Maksimovic et al. 1997; Goswami 

et al., 2020; Pakzad & Tribeche, 2013; 

Hafez, 2019), the temperature, density and 

energy distribution of particles are not fixed. 

Therefore, the previous results are valid as 

long as the defined parameters (in phase 

velocity) are uniform in the environment. 

Recently, in an interesting work, Chaudhuri 

et al. (2019) used the perturbation expansion 

of temperature explained by Cousens et al. 

(2012) in their non-uniform model. For the 

mentioned reasons, we are going to make 

corrections in how to use the reductive 

perturbation method and then we define the 

non-extensive parameter of electrons as a 

first-order perturbation. In this study, 

considering the nonextensive parameter as 

non-uniform (Qiu et al., 2020; Silva et al., 

1998; Lima et al., 2000) and introducing it as 

a first-order expansion in reduced 
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perturbation calculations, is a new idea and 

innovation for a better and more realistic 

understanding of how wave propagates in a 

q-plasma. 

 

2. Method 

We use the nonlinear dynamics of ion 

acoustic wave propagation for our considered 

model (Lu & Liu, 2021). 

𝜕𝑛

𝜕𝑡
+

𝜕(𝑛𝑢)

𝜕𝑥
=∘                                              (1) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= −

𝜕𝜙

𝜕𝑥
                                        (2) 

𝜕2𝜙

𝜕𝑥2
= 𝑛𝑒 − 𝑛                                              (3) 

where, 𝑛 is the ion number density 

normalized by its equilibrium value 𝑛0𝑖, 𝑢 is 

the ion fluid speed normalized by 𝑐𝑖 , and 𝜙 is 

the electrostatic wave potential normalized 

by 𝑇𝑒/𝑒 where 𝑇𝑒 is the electron temperature. 

The time t and the distance x are normalized 

by the ion plasma frequency 𝜔𝑝𝑖
−1 = √

𝑚𝑖

4𝜋𝑛0𝑖𝑒
2 

where 𝑚𝑖 is ion mass and the Debye radius 

𝜆𝐷𝑖 = √
𝑇𝑒

4𝜋𝑛𝑖0𝑒
2, respectively.  

Over the last three decades, many studies 

have been done in nonextensive statistic 

mechanics field based on the deviations of 

the Boltzmann–Gibbs–Shannon (BGS) 

entropic measure. A suitable nonextensive 

generalization of the BGS entropy for 

statistical equilibrium was presented by 

Tsallis (1988), suitably extending the 

standard additivity of the entropies to the 

nonextensive case where the entropic index q 

underpins the generalized entropy of Tsallis 

and measures the amount of its 

nonextensivity of the system. In this case, 

normalized distribution of electrons is given 

by (Rehman & Lee, 2018): 

𝑛𝑒 = [1 + (𝑞 − 1)𝜙]
𝑞+1

2(𝑞−1)                         (4) 

In statistical mechanics and thermodynamics, 

systems characterized by the property of 

nonextensivity are systems for which the 

entropy of the whole is different from the 

sum of the entropies of the respective parts. 

In other words, the generalized entropy of the 

whole is greater than the sum of the entropies 

of the parts if q < 1 (superextensivity), 

whereas the generalized entropy of the 

system is smaller than the sum of the 

entropies of the parts if q > 1 

(subextensivity). Moreover, q = 1 

corresponds to the standard, extensive, BGS 

statistics. Nonextensive statistics were 

successfully applied to a number of 

astrophysical and cosmological scenarios, 

which include stellar polytropes (Plastino & 

Plastino, 1993), the solar neutrino problem 

(Kaniadakis et al., 1996), peculiar velocity 

distributions of galaxies (Lavagno et al., 

1998) and generally systems with long-range 

interactions and fractals such as space-times. 

Cosmological implications were discussed in 

Torres et al. (1997), and recently an analysis 

of plasma oscillations in a collisionless 

thermal plasma was provided from q-

statistics in Lima et al. (2000). 

Many problems about non-uniform plasmas 

have been treated by the reduced perturbation 

method (Gell & Gomberoff, 1977; Rao & 

Varma, 1979; Goswami & Sinha, 1976; 

Havnes et al. 2001; Cousens et al., 2012; 

Chaudhuri et al., 2019). In order to use this 

method, we introduce the independent 

variables through the stretched coordinates of 

the weakly nonlinear theory of the 

electrostatic waves with small but finite 

amplitude as follows: 

𝜉 = 𝜀
1

2(𝑥 − 𝜆𝜏), 𝜏 = 𝜀
3

2𝑡                            (5) 

𝑛 = 1 + 𝜀𝑛1 + 𝜀2𝑛2 +                               (6) 

𝑢 = 𝜀𝑢1 + 𝜀2𝑢2 +⋯                                  (7) 

𝜙 = 𝜀𝜙1 + 𝜀2𝜙2+. . . ..                               (8) 

and the dependent variables are expanded as: 

where ε is a small dimensionless parameter 

measuring the weakness of the dispersion and 

nonlinearity, and λ is the phase velocity 

normalized by the linear IA speed (𝐶𝑖). 
Let us not forget that our main problem is the 

non-uniformity of the non-extensive 

parameter in the environment. In this 

manuscript, the term "non-uniform" is used 

to mean "spatially inhomogeneous", and thus 

in the reductive perturbation method, 

perturbed parameter should be determined by 

the order of the non-uniformity (Chaudhuri et 

al., 2019). In this situation, we introduced a 

weak perturbation of the q-parameter and 

present it as a small but finite q = q0 + ε1q1, 

where q0 is related to the uniform part of the 

nonextensivity, in most part of the plasma, 
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and q1 is the first order perturbation of it in a 

limited area of the environment. For 

example, for q0 = 1, the plasma is in the 

thermal state and for the perturbed area of 

this parameter, nonextensivity appears as q1. 

In fact, with this choice, the non-uniformity 

of the non-extensive effect on ion acoustic 

wave propagation is weakly assumed. 

Now we use the stretched coordinates and 

expansions (5-7) in the basic normalized 

equation (1-3), and collect the same terms in 

different powers of ε. The final result is the 

modified Korteweg-de Vries (mKdV) 

equation. 
 

𝜕𝜙1

𝜕𝜏
+ (

3

2𝜆
−

3−𝑞0

4
𝜆)𝜙1

𝜕𝜙1

𝜕𝜉
+

𝜆3

2

𝜕3𝜙1

𝜕𝜉3
+

𝜆3

4

𝜕(𝑞1𝜙1)

𝜕𝜉
= 0                                              (9) 

where 𝜆 = √
2

1+𝑞0
.  

It is seen that the reductive perturbation 

theory is extended by considering the 

perturbation in the nonextensivity, and its 

result appeared in Equation (9). Perturbation 

in the q appears in the last term of the above 

equation and the constant phase velocity is 

also guaranteed (Landau does not depend on 

the variation of q1). 

 

3. Measurements 

It can be seen that 𝜆 is independent of the q1 

parameter. Equation (9) describes the 

propagation of small amplitude ion acoustic 

wave in the presence of nonextensive 

perturbation parameter within the plasma. 

The last term in this equation presents a new 

source of dissipation, which depends on the 

appearance of perturbation in the electron 

distribution in plasma. This term 

demonstrates that the weak perturbation of 

the nonextensivity ( 1q ) acts as a source of 

dissipation. In fact, Equation (9) explains the 

evolution of IA solitary waves in collision 

with an area with different nonextensivity, 

which was introduced before. In the absence 

of perturbation effect ( 1q =0), Korteweg-de 

Vries (KdV) equation describes the solitary 

waves in uniform nonextensive plasma 

(Bacha et al., 2012): 
 

𝜕𝜙1

𝜕𝜏
+ (

3

2𝜆
−

3−𝑞0

4
𝜆)𝜙1

𝜕𝜙1

𝜕𝜉
+

𝜆3

2

𝜕3𝜙1

𝜕𝜉3
= 0    

(10) 
 

which admits a solitary wave solution as 

follows 𝜙1= 𝜙0𝑠𝑒𝑐 ℎ
2 (

𝜒

𝑤
) where 𝜒 = 𝜉 −

𝑢𝜏, 𝜙0 = 3𝑢 𝐴⁄  is the soliton amplitude and 

𝑤 = 2√𝐵/𝑢 is its width, where 𝐴 = (
3

2𝜆
−

3−𝑞0

4
𝜆) and 𝐵 =

𝜆3

2
. It is emphasized that the 

initial solitary solution is defined out of the 

perturbation region. 

 

4. Results and Discussion 

Studying the behavior of the ion acoustic 

solitary wave after interaction with the q-

perturbation space can be interesting. It can 

be expected that due to the presence of the 

fourth term (
𝜆3

4

𝜕(𝑞1𝜙1)

𝜕𝜉
) in Equation (9), the 

initial solitary waves change in the perturbed 

part of the plasma. It is reminded that the 

"non-uniform" is used in the concept of 

"spatially inhomogeneous". For this purpose, 

we consider a step perturbation for 

nonextensivity as: 

𝑞1 = 𝑞01[1 + tanh(𝛼𝜉)]                          (11) 

The above relation indicates that the 

nonextensivity of electrons reaches to a 

maximum value (2𝑞01) at the perturbation 

region and it gives a zero value far enough 

from 𝜉 = 0 at → −∞ . We can control the 

thickness of varying area through the 

parameter 𝛼. Accordingly, a schematic of the 

slope and slow variation of 𝑞1 is shown in 

Figure 1. 

We can consider 𝑞1 as a constant value in 

Equation (9) (as assumed in the following). 

However, according to Figure 1, we assume 

that the change in the energy perturbation of 

the particles appears slowly and stepwise (we 

could also consider the perturbation effect as 

Gaussian). 
 

 
Figure 1. Perturbation of nonextensivity (𝑞1) as a 

function of ξ. 
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Let us review once again the important point 

and the main challenge raised in this study. 

We have pointed out that the phase velocity 

in 𝜉 = 𝜀
1

2(𝑥 − 𝜆𝜏) is constant and depends on 

the plasma parameters. Therefore, the study 

of solitonic solutions of the KdV equation in 

a plasma model with phase velocity and 

therefore with constant parameters of plasma 

will be allowed unless we compare different 

plasmas. To improve this problem, we used a 

weak perturbed parameter (𝑞 = 𝑞0 + 𝜀1𝑞1) 

to get as close as possible to the actual 

model. We use numerical calculations to 

investigate the changes in the initial solution 

of the ion acoustic wave (soliton) in passing 

through the area that has excess/deficiency 

nonextensivity. In this case, we use the 

fourth-order Runge-Kutta method to solve 

Equation (9). The place grid spacing is 

selected Δξ=0.001 and 0.005 (as cross check 

for the numerical stability of solution) and 

the time grid spacing is chosen as Δτ= 

0.0001. We examine the effect of 𝑞0, 𝑞01 and 

α parameters on the ion acoustic solitary 

waves when it passes through the 

perturbation area. Therefore, from Figures 2 

to 4, it is quite obvious that the ion acoustic 

waves radiate some of their energy as 

backward moving oscillatory shock wave 

after passing through the perturbation region 

(𝑞1 = 𝑞01[1 + tanh⁡(𝛼𝜉)]). In Figure 2, the 

initial ion acoustic soliton travels with speed 

u=0.3 in the unperturbed region (ξ<0) and 

then interacts with the nonextensive 

perturbation 𝑞1=0.15(1+tanh0.8ξ) in ξ≥0, 

and is finally imaged in the ξ>0 region. In 

this Figure, time evolution of soliton is 

shown at τ=3, τ=5 and τ=8 in ξ>0. It is 

observed that in the presence of excess q-

parameter in part of the environment, ion 

acoustic soliton propagation is accompanied 

by shock wave oscillatory. It is clear that the 

amplitude of the wave increases and also the 

oscillating wave occurs at the point where the 

initial soliton wave collides with the 

perturbation of nonextensivity. Figure 3 

shows the time evolution of the soliton wave 

after entering the negative perturbation of q-

parameter (𝑞1=-0.15(1+tanh0.8ξ)) in the 

plasma at three different times. It is observed 

that the amplitude of the wave decreases after 

entering the perturbation area, but a strong 

shock wave is generated. Figure 3 illustrates 

that when ion acoustic soliton in a positive 

nonextensive plasma experiences a negative 

perturbation of nonextensivity in part of the 

media, it loses much of its energy. A 

comparison of Figures 2 and 3 shows that the 

negative perturbation effect (𝑞1 < 0) is 

stronger on the initial soliton. 

 

 
Figure 2. Time evolution of the ion acoustic soliton in dealing with a positive nonextensive perturbation region. 
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Figure 3. Time evolution of the ion acoustic soliton in dealing with a negative nonextensive perturbation region. 

 

In Figure 4, we compare the effect of  

two positive and negative perturbations 

(𝑞1 = −0.2 and 𝑞1 = +0.2) on the  

ion acoustic soliton when 𝑞0 = −0.6. In  

this case, due to the constant assumption of 

the perturbed parameter (𝑞1), the fourth term 

of Equation (9) can be presented as  

𝜆3

4
𝑞1

𝜕𝜙1

𝜕𝜉
. This figure shows that there is no 

change in the initial soliton in the passing of 

negative perturbation (𝑞1 = −0.2), in 

contrast to the positive perturbation (𝑞1 =
+0.2) it strongly amplifies the waves and 

shock oscillations created in it. 
 

 
Figure 4. Time evolution of the ion acoustic soliton in dealing with a negative (𝑞1 = −0.2) and positive (𝑞1 = +0.2) 

nonextensive perturbation region for 𝑞0 = −0.6. 



226                                  Journal of the Earth and Space Physics, Vol. 48, No. 4, Winter 2023 

 

One of the most important and interesting 

results of this study can be seen in Figures 5 

and 6. The soliton wave is moving from ξ=-

20 with speed 𝑢0 = 0.3 towards positive 

perturbations (𝑞1 = 0.1, 0.3⁡and⁡0.5) in 

Figure 5 and negative perturbations (𝑞1 =
−0.1,−0.3⁡and − 0.5) in Figure 6. The 

background value of nonextensivity (𝑞0) has 

been considered equal to 1.6. It is seen that 

the wave propagates with greater speed and 

amplitude in the presence of positive 

perturbation. In contrast, it is clear from 

Figure 6 that if the wave encounters a 

negative type of perturbation, it weakens so 

that with increasing intensity of the 

perturbation, the speed and intensity of the 

wave extinction get stronger. Figure 7 shows 

that the effect of a non-extensive perturbation 

is negligible for a wave traveling at high 

speed (𝑢0 = 0.5). As can be seen, the amount 

of perturbation has no effect on this result. In 

other words, if the velocity of ion acoustic 

wave is high, the non-extensive perturbation 

has no effect on the wave propagation. This 

outcome holds for other values (𝑞0, 𝑞1 and 

𝑢0) as well. 

It is depicted that the first-order perturbation 

of nonextensivity provides a new term in the 

motion equation of solitary wave, which 

depends on the spatial variation of 

perturbation as well as original profile of 

propagating localized wave. Furthermore, by 

using the numerical calculation, it is obvious 

that the velocity and amplitude of out coming 

ion acoustic wave from perturbation area is 

different from the primary one. 
 

 
Figure 5. Time evolution of the ion acoustic soliton in dealing with three positive nonextensive perturbation regions 

(𝑞1 = 0.1, 0.3⁡and⁡0.5) for 𝑞0 = 1.6. 
 

 
Figure 6. Time evolution of the ion acoustic soliton in dealing with three negative nonextensive perturbation regions 

(𝑞1 = −0.1, −0.3⁡and − 0.5) for 𝑞0 = 1.6. 
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Figure 7. Time evolution of the ion acoustic soliton in dealing with three negative nonextensive perturbation regions 

(𝑞1 = 0.1, 0.3⁡and⁡0.5) for 𝑞0 = 1.6. 

 

5. Conclusions 

We considered an electron-ion plasma with 

non-uniform nonextensive electrons. The 

reductive perturbation technique is employed 

to describe the propagation of ion acoustic 

solitary wave. We have presented a safe way 

to include perturbation due to temperature 

changes in the evolution equation of the 

solitary wave. In our introduced method, the 

phase velocity depends on the plasma 

parameters (𝜆 = √2/1 + 𝑞0) and remains 

constant throughout the environment. 𝑞0 is 

unperturbed parameter of nonextensive 

electrons distribution. However in real 

conditions, the energy distribution of 

electrons is not uniform and therefore to 

improve this problem we entered the 

nonextensive parameter as a first-order 

perturbation as 𝑞 = 𝑞0 + 𝜖1𝑞1 in the 

calculations in which 𝑞1 is perturbed 

parameter in a part of the distribution 

function. It is shown that the first-order 

perturbation provides a new term (
𝜆3

4

𝜕(𝑞1𝜙1)

𝜕𝜉
) 

in the solitary wave equation of motion, 

which depends on the spatial variation of 

perturbation as well as original profile of 

propagating localized wave. We studied the 

time evolution of ion acoustic solitons during 

propagation in the step-shaped perturbed 

region of the non-extensive parameter. Using 

the numerical calculation, it is depicted that 

the amplitude of out coming ion acoustic 

wave from positive (negative) perturbation 

area is longer (shorter) than primary one. As 

a final result of this study, it can be claimed 

that any small change in the q parameter can 

be made a challenge to the soliton profile in 

the environment unless the soliton wave 

velocity is high enough for passing from the 

perturbation area. It can be said that any 

parameter such as temperature, density, 

superthermality and viscosity can be 

introduced as sources of oscillating shock 

wave production in the environment. This 

manuscript is important from the point of 

view that we know the plasma parameters 

that are not uniform in a realistic situation. 
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