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Abstract 
The determination of the geoid using the Stokes integral involves transforming gravity data from their 

measurement altitude to the geoid/ellipsoid surface. This study focuses on improving the accuracy of 

analytical downward continuation (ADC) for reducing terrestrial gravity anomalies to the geoid. The ADC 

method uses the Taylor series and successive vertical gradients of the gravity anomalies. The Moritz integral 

formula, which is based on Poisson's integral, is used to derive the vertical gravity gradient. To enhance its 

accuracy, a mean vertical gradient is proposed by introducing an analytical formula based on planar 

approximation. This formula improves accuracy by 50%. Numerical analysis, using simulated free air 

anomalies up to harmonic degree/order 5540/5540, reveals that the difference between mean and point ADC 

results in geoidal height can be several decimeters. The study also finds that the ADC of 2'×2' anomalies 

remains stable even with different levels of noise, while the Taylor series of 1'×1' gravity anomalies diverges. 
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1. Introduction 

The use of Stokes's formula for determining 

the geoid requires that the gravity anomalies, 

which are boundary values, be referred to the 

geoid. Therefore, gravity reduction is 

necessary to harmonically downward 

continuation (DC) of the gravity anomalies 

from the Earth's surface to the geoid. DC is a 

challenging stage in solving geodetic 

boundary value problems, as it is inherently 

ill-posed. However, for discrete data, 

instability is dependent on the presence of 

high-frequency components in data, 

including measurement noise. 

Different techniques are utilized to perform 

DC such as: least squares collocation (LSC), 

the Poisson integral and analytical downward 

continuation (ADC) methods. LSC can 

reduce gravity anomalies between two 

arbitrary surfaces using the construction of 

the 3D covariance function (Forsberg, 1987; 

Zhao et al., 2018; Li et al., 2022). Poisson 

integral, which numerically solves a 

Fredholm’s integral equation of the first-

kind, has been examined by Heiskanen and 

Moritz (1967), Vaníček et al. (1996), 

Martinec (1996), Sun and Vaníček (1998), 

Goli et al. (2011), Sebera et al. (2014), 

Vaníček et al. (2017), Foroughi et al (2018), 

Sajjadi et al. (2021), and Li et al. (2022). 

Employing Taylor series expansion, the ADC 

has been described by Moritz (1980), Sideris 

(1987), Huang et al. (2003), and Li et al. 

(2022).  

The LSC and Poisson integral methods have 

a major weakness that requires solving a 

large system of linear equations, which can 

be computationally challenging for dense 

gravity data. Additionally, the DC of dense 

gravity data using Poisson integral yields an 

ill-posed problem that should be regularized 

in appropriate way. Several studies have 

investigated the instability of DC of 

terrestrial gravity data using Poisson 

approach. Martinec (1996) demonstrated that 

the DC of gravity anomalies with spacing 

less than 1 km is unstable. Goli et al. (2018) 

used the analysis of the Picard condition to 

demonstrate that the DC of Helmert 

anomalies with spacing less than 2 km in 

mountainous regions is unstable. Sajjadi et al. 

(2021) analyzed gravity data in Ireland and 

showed that the DC of data with spacing less 

than 500 m is unstable.  

The ADC has been widely used in 

geophysical studies for gravity reduction 

between two surfaces, assuming a planar 

approximation of topography (Xu et al., 

2007; Zeng et al., 2013; Zeng et al., 2015; 

Zhang et al., 2016, 2018). Moritz (1980) used 

the Taylor series to solve the Molodensky 
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boundary value problem for reduction of 

gravity anomaly from the telluroid to the 

point level for the determination of the height 

anomaly, which is called analytical 

downward continuation by him. 

ADC involves using successive vertical 

gradients of gravity. However, calculating 

these gradients as a derivative operator 

amplifies high-frequency components of 

data. Instability in the gravity anomaly ADC 

problem can cause the Taylor series to 

diverge. Various studies have investigated 

the instabilities of the Taylor series for ADC 

of gravity anomalies in geophysical studies. 

For example, see Zhang et al. (2013), Zeng et 

al. (2015), and Zhang et al. (2018). However, 

most of these studies are limited to the 

reduction of the gravity anomaly between 

two planar surfaces and are not practically 

useful for the terrestrial gravity data observed 

on the irregular surface of the Earth. 

The numerical evaluation of the successive 

vertical gravity gradients is the heart of ADC 

and can be calculated from the data using 

various methods, such as numeric integration 

(Moritz, 1980; Huang et al., 2003; Li et al., 

2022), computing from horizontal gradients 

(Fedi and Florio, 2002; Zhang et al., 2016), 

and Fast Fourier Transform (FFT) (Cooper, 

2004; Xu et al., 2007; Pasteka et al., 2018). 

In geodetic applications, numeric integration 

is often preferred as it can be formulated for 

a spherical or ellipsoidal Earth. 

The aim of this study is to improve the 

efficiency of the ADC method for continuing 

terrestrial gravity data. To achieve this goal, 

we introduce the mean vertical gradient 

operator and derive an analytical formula. In 

addition, we examine the kernel behavior and 

truncation error of the mean vertical gradient. 

Finally, we investigate the relationship 

between data spacing and the convergence of 

the Taylor series. 

 

2. Theory 

In a harmonic space, the gravity anomaly on 

the Earth's surface is obtained from the 

Taylor series expansion of the gravity 

anomaly on the geoid: 
 

Δ𝑔(𝑟𝑖 , Ω) = Δ𝑔(𝑅, Ω) +
𝜕Δ𝑔

𝜕ℎ
|

𝑟=𝑅
ℎ +

1

2

𝜕2Δ𝑔

𝜕ℎ2 |
𝑟=𝑅

+ ⋯ ,  

(1) 
 

where Ω = (𝜃, 𝜆) represents the surface  

 

coordinates of the point, 𝑅 is the mean radius 

of the Earth, 𝜆 and 𝜃 are the longitude and 

latitude respectively. Using the 

approximation 
𝜕

𝜕ℎ
≈

𝜕

𝜕𝑟
, the vertical gradient 

of function 𝑓 on the sphere can be obtained 

as (Heiskanen and Moritz ,1967): 
 

𝜕𝑓(𝑅,Ω)

𝜕ℎ
= −

2

𝑅
𝑓(𝑅, Ω) +

𝑅2

2𝜋
∬

𝑓(𝑅,Ω′)−𝑓(𝑅,Ω)

𝑙0
3 d𝜎′

𝜎
,   

  (2) 
 

Where 𝑙0 = 2 𝑅 sin
𝜓

2
 is the spatial distance 

between two points on the geoid, and 𝜓 is the 

spherical distance. In Equation (1), the 

gravity anomaly on the geoid 𝛥𝑔(𝑅, Ω) cannot 

be directly calculated from the anomaly on 

the Earth's surface 𝛥𝑔(𝑟𝑖 , Ω). Moritz (1980) 

proposed an iterative method for calculating 

𝛥𝑔(𝑅, Ω) from Equation (1) as follows: 
 

Δ𝑔(𝑅, Ω) = ∑ 𝑔𝑖
∞
𝑛=0  ,                                     (3) 

Where 
 

𝑔0 = Δ𝑔(𝑟, Ω), 𝑔𝑛 = 
− ∑ ℎ𝑚𝐿𝑚(𝑔𝑛−𝑚), 𝑛 > 1.𝑛

𝑚=1                        (4) 
 

The function 𝐿(Δ𝑔) is the vertical gradient 

operator defined in Equation (2). This 

operator has the following property [ibid]: 

𝐿𝑚 =
1

𝑛
𝐿 (𝐿𝑚−1) , 𝑛, 𝑚 > 1 .                         (5) 

Evaluating the series (3), even for the first 

few terms, requires the use of multiple 

gradient operators, resulting in significant 

increase in computational time. However, by 

performing some mathematical calculations, 

a simple formula for 𝑔𝑛 can be derived: 

𝑔0 = Δ𝑔(𝑟, Ω), 𝑔𝑛 = −
ℎ

𝑛
𝐿(𝑔𝑛−1), 𝑛 ≥ 1.      (6) 

In this equation, only one integration is 

utilized at each iteration. If all derivatives are 

obtained based on the term 𝑔0, then the ADC 

takes the following form (Bjerhammar, 1969; 

long and Kaufman, 2013): 
 

Δ𝑔(𝑅, Ω) = 𝑔0 − ℎ𝐿[𝑔0] +
ℎ2

2!
𝐿[𝐿[𝑔0]] − 

 
ℎ3

3!
𝐿 [𝐿[𝐿[𝑔0]]] + ⋯ = 𝑔0 + 𝑔1 + 𝑔2 + ⋯       (7) 

 

3. Mean vertical gradient 

If the gravity anomaly is provided on a 

regularly spaced grid, a straightforward 

approach for numerical integration of 

Equation (2) is to utilize the trapezoidal rule: 
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𝜕𝑓(𝑅, 𝛺𝑖)

𝜕ℎ
= −

2

𝑅
𝑓(𝑅, Ω𝑖) + 

∑ [𝑓(𝑅, Ω𝑗) − 𝑓(𝑅, Ω𝑖)]𝐾(𝜓) 𝑐𝑜𝑠 𝜑𝑗 𝛥𝜑 𝛥𝜆𝑁
𝑖=1 ,  

 (8) 
 

where 𝐾(𝜓) =
𝑅2

2𝜋
𝑙0

−3(Ω𝑖, Ω𝑗), Here, Δ𝜑 and 

Δ𝜆 represent the grid steps in the longitudinal 

and latitudinal directions, respectively. In this 

study, we refer to the kernel 𝐾(𝜓) as the 

point kernel as it is calculated at the center of 

geoid cell. However, due to a large variation 

of 𝐾(𝜓) when 𝜓 → 0, Equation (8) has a 

large discretization error for small spherical 

distances. Hirt et al. (2011) demonstrated that 

using the concept of mean kernels for 

convolution integrals can significantly reduce 

discretization error. Goli et al. (2011) showed 

that the mean kernel of the Poisson integral 

offers much higher accuracy than its point 

kernel counterpart. 

We define the mean vertical gradient 

operator of mean anomaly as: 
 

𝜕Δ𝑔(𝑅,Ω)

𝜕ℎ
= −

2

𝑅
Δ𝑔(𝑅, Ω) +

𝑅2

2𝜋
∬ Δ𝑔(𝑅, Ω′)𝐾(𝜓)d𝜎′.

𝜎
  

  (9) 
 

𝐾(𝜓) is the mean kernel in each cell: 
 

𝐾(𝜓) =
1

8𝑅3 ∫ sin−3 𝜓

2𝐶𝑗
d𝜎′.                     (10) 

 

The average anomaly in each cell is 

represented by Δ𝑔. The mean kernel 𝐾 can 

be computed by numerically integrating over 

each cell 𝐶𝑗, but this approach is both time-

consuming and singular at 𝜓 = 0. Thus, to 

ensure accurate calculations and remove the 

singularity, we utilize its analytical solution 

in the local Cartesian system. The local 

Cartesian coordinate system can be defined 

as: 

𝑥 = 𝑅 (𝜑 − 𝜑0), 𝑦 = 𝑅 (𝜆 − 𝜆0) cos 𝜑.       (11) 

The expression for the mean kernel in the 

Cartesian coordinate system can be written 

as: 

𝐾(𝑥, 𝑦, 𝑥′, 𝑦′) =
1

𝑅2 ∫ ∫
d𝑥′d𝑦′

𝑑3(𝑥,𝑦,𝑥′,𝑦′)

𝑦2

𝑦1

𝑥2

𝑥1
,    (12) 

where 𝑑 = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 represents 

the distance between the computation  

point and the integration point on the  

geoid. By introducing the computation point 

as the origin of the coordinate system, the 

solution to the integral (12) can be derived 

as: 

𝐾(𝑥, 𝑦, 𝑥′, 𝑦′) = − ||
𝑑

𝑥′𝑦′|
−𝑅Δ𝜑

+𝑅Δ𝜑

|
−𝑅Δ𝜆 cos 𝜑′

+𝑅Δ𝜆 cos 𝜑′

.     (13) 

 

The kernel 𝐾 is not singular at 𝜓 = 0. The 

planar approximation does not introduce a 

significant error since 𝐾 attenuates at small 

distances.  

Theoretically, integrals (2) and (8) cover the 

entire surface of the Earth. Practically, due to 

limited data coverage, these integrals are 

truncated at short distances. The truncation 

error can be calculated by using long-

wavelength components of the gravity 

anomaly computed from a geopotential 

model. The truncation error for integral (8) is 

read: 
 

𝐹𝑍 =
𝑅2

2𝜋
∬ Δ𝑔(𝑅, Ω′)𝐾(𝜓)d𝜎′

𝜓>𝜓0

≈ 

𝑅2

2𝜋
∬ Δ𝑔(𝑅, Ω′)𝐾(𝜓)d𝜎′,

𝜓>𝜓0
                       (14) 

 

where 𝜓0 represents the integration radius. 

The Molodensky truncation coefficients 

(Molodenskij et al., 1962) can be utilized to 

compute the truncation error. By introducing 

the kernel 𝐾∗(𝜓), we obtain: 
 

𝐾∗(𝜓) = {
0,                   𝜓 ≤ 𝜓0

𝐾(𝜓),          𝜓 > 𝜓0,
                     (15) 

The truncation error is given by: 
 

𝐹𝑍 =
𝑅2

2𝜋
∫ ∫ Δ𝑔(𝑅, Ω′)𝐾∗(𝜓)

𝜋

𝜓=0

2𝜋

𝛼=0
sin 𝜓 d𝛼 d𝜓.  

  (16) 
 

The spectral form of the kernel 𝐾∗(𝜓) is 

given by: 
 

𝐾∗(𝜓) = ∑
2𝑛+1

2

∞
𝑛=0  𝑡𝑛 𝑃𝑛(cos 𝜓).                (17) 

 

The coefficients 𝑡𝑛 are computed as: 
 

𝑡𝑛 = ∫ 𝐾∗(𝜓)
𝜋

𝜓=0

𝑃𝑛(cos 𝜓) sin 𝜓 d𝜓 = 

∫ 𝐾∗(𝜓)
𝜋

𝜓=𝜓0
𝑃𝑛(cos 𝜓) sin 𝜓 d𝜓.            (18) 

 

The integral (19) can be evaluated 

numerically. By substituting Equation (18) 

into integral (17), we obtain: 
 

𝐹𝑍 = 
𝑅2

2𝜋
∫ d𝛼 ∫ Δ𝑔(𝑅, Ω′) ∑

2𝑛+1

2
∞
𝑛=0  𝑡𝑛 𝑃𝑛(cos 𝜓)

𝜋

𝜓=0

2𝜋

𝛼=0
sin 𝜓 d𝜓.   

(19) 
 

The truncation error of the integral is given 

by: 

𝐹𝑍 = 𝐺𝑀𝑅 ∑ 𝑡𝑛 Δ𝑔𝑛
∞
𝑛=0 ,                             (20) 
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where Δ𝑔𝑛 is the n-th degree harmonic of the 

gravity anomaly is derived using an EGM. 

GM is the product of the gravitational 

constant and the mass of the Earth. Since the 

truncation error of the integral is due to the 

long-wavelength components of the kernel 𝐾, 

expansion (20) is only calculated up to low 

degrees such as 𝑁 = 360. 
 

4. Fast computation of mean kernel 

The analytical formula (13) speeds up mean 

kernel computation, but ADC calculations 

are still time-consuming. To improve 

efficiency, FFT can be utilized. However,  

in this study, we employ the isotropic 

property of the kernel 𝐾. The kernel 𝐾 

depends solely on the spherical distance 𝜓, 

and its value remains constant in each 

parallel for varying λ values. Hence, 𝐾 only 

needs to be computed once per parallel, 

significantly reducing computation time. 

Huang et al. (2000) have already utilized this 

method for the fast evaluation of the Stokes 

integral. 

ADC has a significant advantage in that  

it can perform downward continuation 

without the need to solve a system of linear 

equations. However, the series (7) can  

often diverge when data spacing decreases. 

To overcome the issue, one approach is  

to use a few initial terms to approximate  

the solution (Zhang et al., 2013) Truncated  
 

Taylor series are equivalent to applied 

regularization methods in Poisson's integral 

method. 

 

5. Numerical results 

To investigate the accuracy of ADC, 

knowledge of gravity anomalies on Earth and 

the geoid surface is required. The 

XGM2019e geopotential model (Zingerle et 

al., 2020) was used to generate the free air 

anomaly corresponding to harmonic 

degree/order 5540 in the test area, limited to 

25°<φ<40° and 45°<λ<60°. The point 

heights were obtained from the SRTM mean 

DEM. Figure 1 displays the gravity anomaly 

on the Earth's surface. 

First, we calculated the truncation 

coefficients for three integration radii: 

𝜓0=0.5°, 1°, and 1.5°. Then, we computed 

the truncation error of 𝑔1 using the 

EGM2008 model (Pavlis et al., 2012) up to 

degree/order 360. It should be noted that the 

truncation error of second and higher terms is 

neglected due to their small values. Figure 2 

illustrates the truncation error of 𝑔1 for three 

integration radii: 𝜓0 =0.5°, 1° and 1.5°. 

According to this figure, for an integration 

radius of 1.5°, the average error caused by 

the far-zone effect is less than 0.1 mGal. 

Furthermore, our computations indicate that 

degree 𝑁 = 360 is sufficient to compute the 

far zone contribution. 

 

Figure 1. The surface free-air anomaly computed from the XGM2019e model up to degree/order 5540. 
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min=-0.5, max=0.1, mean=-0.0 STD=0.09 min=-1.1, max=0.2, mean=-0.1, STD=0.1 min=-4.5, max=0.8, mean=-0.4, STD=0.5 

Figure 2. The truncation error of 𝑔1 for integration radii of 𝜓0 = 0.5∘ (left panel), 𝜓0 = 1∘ (middle panel), and 𝜓0 =
1.5∘ (right panel). Units: mGal. 

 

To investigate the impact of the mean 

gradient operator, ADC performed using  

both point and mean kernels. ADC errors 

were computed by comparing the results  

with geoid anomalies from the XGM2019e 

model. Figures 2 and 3 display the ADC 

error for the point and mean kernels, 

respectively. The RMSE of the two kernels  

is approximately 9 and 14 mGal, indicating 

that the mean kernel reduces the ADC error 

by about 50%. The difference between  

the two kernels is significant in mountainous 

areas (Figure 4), with a standard deviation  

of the difference exceeding 5 mGal, 

equivalent to about 4 cm in geoid height, see 

Figure 5. 
 

 
Figure 2. ADC error using the mean kernel. min=-170.9, max=713.8, mean=-0.4, STD=9.4 (mGal). 

 

 
Figure 3. ADC error using the point. min=-219.0, max=825.0, mean=0.35, STD=14.3 (mGal). 
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Figure 4. The difference in ADC using the point kernel and the mean kernel. min=-191.85, max= 71.52, mean=-0.76, 

STD= 5.74 (mGal). 

 

 
Figure 5. The difference in ADC between the point kernel and the mean kernel in the geoid height. min=-61.4, max=0.01, 

mean=-3.1, STD=3.9 (cm). 

 
ADC of simulated 2'×2' gravity anomalies is 

a well-posed problem. For higher terms of 

the Taylor series, the error in ADC 

continuously decreases and the series 

converges after 10 terms with tolerance of 

1μGal. However, the ADC of simulated 1'×1' 

gravity data diverges. It is important to note 

that the convergence of the Taylor series 

imply that the RMSE of results necessarily 

decrease for higher terms. For diverge series, 

after a few initial terms, the RMS decreases 

and then increases uniformly with higher 

terms. This phenomenon is comparable to 

semi-convergency that usually occurs in 

iterative solving of ill-posed problems (Goli 

et al., 2018). Figure 6 displays the RMSE of 

ADC for noise free 2'×2' and 1'×1' data for 

various numbers of Taylor series terms. 

According to the figure, semi-convergence 

occurs in the Taylor series of ADC for 1'×1' 

data. The RMS error decreases until the third 

term and then increases regularly due to the 

effect of high-frequency components in the 

data. 

To investigate the impact of measurement 

noise on the ADC results and the 

convergence of the Taylor series, white noise 

with standard deviation 1.0, 2.0 and 5 mGal 

was added to the 2'×2' anomalies. Figure 7 

shows the RMSE of ADC with mean kernel 

for different terms of the Taylor series, with 

and without noise. The figure demonstrates 

that even with a 5 mGal noise, the downward 

continuation remains convergent. The results 

shown in Figures 6 and 7 suggest that grid 

spacing is a more critical factor for the 

stability of the ADC compared to the noise in 

the data. 
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Figure 6. RMSE of ADC for noise free data. 

 

 
Figure 7. RMSE of ADC for noisy data. 

 

6. Conclusion 

The determination of the geoid by Stokes's 

integral requires the downward continuation 

of terrestrial gravity data from the Earth's 

surface onto the surface geoid or ellipsoid. 

However, this procedure is known to be 

unstable. In this study, the analytical 

downward continuation method was tested 

using simulated free-air anomalies. 

The accuracy of ADC was improved by 

introducing the mean vertical gradient 

operator, and an analytical formula for its 

calculation was presented to speed up 

computations. Numerical experiments were 

performed using two regular grids with 

resolutions of 1'×1' and 2'×2', with different 

levels of noise. The results showed that the 

mean kernel improves the accuracy of ADC 

by up to 50% compared to the point kernel. 

The far-zone contribution of ADC did not 

exceed 0.1 mGal for a radius of 1.5°. The 

ADC of both free and noisy 2'×2' grids was 

found to be stable. However, the Taylor 

series of ADC for the 1'×1' grid is diverged, 

and the results show that the instability of 

ADC depends more on the grid spacing than 

the noise level. 
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