
Vol. 49, No. 4, Winter 2024, P. 1-9 

 (Research Article) 

Cite this article: E. Ardestani, V. (2024). Sparse norm and Cross-gradient inversions of gravity and magnetic data sets utilizing open-

source resources in Python (Case study: Hematite ore body in Jalal Abad area (Iran)). Journal of the Earth and Space 

Physics, 49(4), 1-9. DOI: http//doi.org/10.22059/jesphys.2023.355404.1007502 

                               Publisher: University of Tehran Press.                                                                                         Print ISSN: 2538-371X 

                               DOI: http//doi.org/10.22059/jesphys.2023.355404.1007502                                                     Online ISSN: 2538-3906 

Sparse norm and Cross-gradient inversions of gravity and magnetic data sets 

utilizing open-source resources in Python (Case study: Hematite ore body in Jalal 

Abad area (Iran)) 
 

E. Ardestani, V.
1  

 
 

1. Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran. 
 

Corresponding Author E-mail: ebrahimz@ut.ac.ir 

(Received: 25 Feb 2023, Revised: 11 July 2023, Accepted: 26 Sep 2023, Published online: 20 Feb 2024) 
 

 

Abstract 
The gravity and the magnetic data sets are utilized to model the Hematite ore body. The cross-gradient joint 

inversion is used to invert the data sets simultaneously. To discretize the model space, the advanced meshing 

algorithm (Octree mesh) has been applied. The sparse norm and cross-gradient inversion modules in Python, 

accessible through Simulation and Parameter Estimation in Geophysics (SimPEG, version 0.17.0) website, 

have been applied to the inversion process. The sparse norm inversions do not provide reasonable results, 

particularly for the gravity data set. The estimated density contrasts through the inversion process are very 

low and unrealistic and on the other hand, the north-south cross sections do not represent a real image from 

the subsurface sources. The magnetic modeling results obtained through sparse norm inversion also show 

unrealistic characters, particularly for the 3-dimensional figure of the subsurface anomaly. 

The cross-gradient inversion acts quite successfully for both gravity and magnetic models in spite of high 

noise level in gravity data and the weak signal of magnetic data. The results are in good agreement with 

geological evidences and also former geophysical survey in the survey area. The priority of cross-gradient 

inversion of gravity and magnetic data sets to separate inversion is quite clear, despite the weak magnetic 

signal. 
 

Keywords: Sparse norm inversion, Cross-gradient inversion, Gravity and magnetic data sets, Hematite ore-

body. 
 

1. Introduction 

The inherent ambiguity in the inversion of 

individual data sets, especially potential field 

data, could be reduced considerably in a joint 

inversion utilization. The cross-gradient 

constraint (Gallardo, 2004), widely used in 

joint inversion methods, will lead to 

structurally similar subsurface models. 

Some joint inversion methods are based on 

different physical property models with 

similar spatial distribution structures, such as 

cross-gradient joint inversion [e.g., Gallardo 

and Meju, 2004, Zhou, et al., 2015). 

Gravity and magnetic data inversions have 

resulted in non-similar density and 

magnetization models. On the other hand, the 

proposed cross-gradient joint inversion 

algorithm have led to structurally similar 

models.  
 

2. Geological setting 

The survey area is located close to Zarand in 

Kerman province in Iran. The dominant host 

rocks in the area are igneous rocks of the 

Rizo formation. There are several volcano 

clastic dikes and sills intrusions in the area. 

Iron deposits are deep and have NW-SE 

strikes. Oxidation of iron ore bodies 

generates Hematite that is concentrated in 

shallow faults and cracks. The geological 

map showing the survey area is depicted in 

Figure 1 (Jolidehsar et al., 2021). 
 

3. Input data 

The Bouguer gravity data set and total 

intensity magnetic data are utilized for the 

joint inversion process. The magnetic 

measurements are carried out in a network 

with 20 m grid spacing between points and 

40 m distance of profiles. The total intensity, 

inclination and declination are, 46600 nT, 

48.2 degrees and 2.8 degrees, respectively. 

The gravity measurements are done at the 

same distances as the magnetic network. The 

Bouguer gravity anomalies and the residual 

total magnetic intensity are shown in Figures 

2a and 2b, respectively. 

https://jesphys.ut.ac.ir/article_94143.html
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Figure 1. Qal: Quaternary Deposits, Qf2, Young windy sands, Qf1, Old windy sands, Qtl, Old trusts, €q, Quartzite, 

sandstone, phyllite, tuff, P€q, siltstone, sandstone tuff, P€f, Flysch stones (sandstone, shale, siltstone). 

 

 
                                    (a)                                                                                        (b) 

Figure 2. a) Bouguer anomalies (mGal), b) Total magnetic intensity (nT). 

 
4. Gravity data processing 

Observed Bouguer gravity anomalies are 

shown in Figure 2a. Regional effects are first 

removed by using the polynomial fitting 

method. The Bouguer anomalies in Figure 2a 

have a strong trend in the northeast-

southwest direction. This trend represents the 

regional anomalies and is simulated by a 

polynomial with degree 2. The coefficients of 

the polynomial are estimated through Scipy 

modules (Jones et al., 2001). The residual 

anomalies are computed by subtracting the 

regional effects from the Bouguer anomalies. 

The residual anomalies are depicted in Figure 

3a. 

Smoothing the anomalies and deleting near  

 

surface noises, the residual anomalies are up-

warded to a height of 40 m, and the results 

are shown in Figure 3b. The 40 m height is 

selected due to the existence of quaternary 

deposits and conglomerates from the ground 

surface to a depth of 59 m in bore-hole 

drilling that will be shown in the next 

sections. The Fourier transform is applied to 

upward the residual anomalies, 

𝐺𝑧(𝑝, 𝑞) =  𝑒−𝑧√𝑝2+𝑞2
𝐺0(𝑝, 𝑞)                       (1) 

where 𝐺𝑧(𝑝, 𝑞) 𝑎𝑛𝑑 𝐺0(𝑝, 𝑞)  are 2-d discrete 

transform of data in height z and ground 

surface respectively and p, q are wave 

numbers of x and y, the coordinates of the 

gravity points. 
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                                     (a)                                                                                   (b) 

Figure 3. a) Residual gravity anomalies (mGal), b) up-warded gravity anomalies (mGal). 

 

5. The sparse norm inversion method 

In the first step, we invert gravity and 

magnetic data sets separately by applying the 

sparse inversion module accessible through 

SimPEG (Cockett et al., 2015). The theory of 

this method has been presented in detail in 

the authors' previous works (Ardestani et al., 

2021). 

The optimization problem is non-linear as β 

is not known. There are also imposed 

bounding constraints and using sparse norm. 

So it is solved utilizing a projected Gauss-

Newton approach that employs a conjugate 

gradient solver (SimPEG). 

Objective function in the L2 norm is written 

as follows (Oldenburg and Li, 2005): 
 

∅(𝒎) =
1

2
‖𝑾𝑑(𝐹(𝒎) − 𝒅𝑜𝑏𝑠)‖2

2 + 

1

2
𝛽‖𝑾𝑚(𝒎 − 𝒎𝑟𝑒𝑓)‖

2

2
                                  (2) 

Assuming that 𝛽 is fixed, our goal is to find 

m that minimizes Equation (2). Using an 

iterative procedure and letting 𝑚𝑛 be the 

current model and δm the perturbation, and 

expanding ∅(𝒎) in a Taylor series and 

ignoring the higher-order terms yields: 

∅(𝒎𝒏 +  𝛿𝒎) =  ∅(𝒎𝒏) +  𝑔𝑇  𝛿𝒎 + 
1

2
𝛿𝑚

𝑇 𝐻𝛿𝑚    

(3) 

Taking the derivative of Equation (3) with 

respect to 𝛿𝒎 and setting the resultant equal 

to zero finally we have (Oldenburg and Li, 

2005), 
 

(𝐽𝑇𝑾𝑑
𝑇𝑾𝑑𝐽 + 𝛽𝑾𝑚

𝑇 𝑾𝑚)𝛿𝒎 = 
 𝐽𝑇𝑾𝑑

𝑇𝑾𝑑(𝒅𝑜𝑏𝑠 − 𝐹(𝒎)) −  𝛽𝑾𝑚
𝑇 𝑾𝑚(𝒎 − 𝒎𝑟𝑒𝑓) 

   (4) 
 

This is called the Gauss-Newton equation. 

Obtaining the 𝛿𝒎 through Equation (4) the 

updated model at the n+1 iteration is: 

𝒎𝒏+𝟏 = 𝒎𝒏 + 𝛿𝒎                                        (5) 

The iteration continues until a solution with 

an acceptably small misfit is found. 

 

6. Cross-gradient joint inversion 

A key difficulty in the joint inversion of two 

or more seemingly disparate geophysical data 

sets is how to couple the model parameters. 

An efficient philosophy is the use of common 

geometrical constraints. A convenient un-

normalized way to measure the geometrical 

similarity of the models is through the use of 

the cross-gradient function (Gallardo & 

Meju, 2004) given by: 

𝝉(𝑥, 𝑦, 𝑧) =  ∇𝒎𝒈(𝑥, 𝑦, 𝑧) × ∇𝒎𝑻(𝑥, 𝑦, 𝑧)       (6) 

where the null values of this function 

determine either the full collinearity or the 

negligibility of the gradients of the models 

(𝒎𝒈 𝑎𝑛𝑑 𝒎𝒎 ) at corresponding positions 

and, therefore, can be used to constrain the 

models. While avoiding normalization of the 

cross gradients, we favor stable iterative 

search procedures for this second-order 

function (Gallardo & Meju, 2004) and 

encourage the dominance of the largest 

gradient, required by either data set, in saddle 

points. To discretize the model space, the 3-

D model of the subsurface is discretized into 

a group of m rectangular blocks, each block 

(hereafter referred to as a cell) having a 

constant density and magnetization. The set 

of parameters is jointly estimated by defining 

an objective function that incorporates the 

following criteria  

(i) Lowering criteria: The gravity and 

magnetic models should satisfactorily 

reproduce their respective predicted data in a 

least-squares sense by simultaneously 

minimizing, 

∅𝑔 =  ∑ {
𝑔𝑖

𝑜𝑏𝑠−𝑔𝑖
𝑐𝑎𝑙

𝜎𝑔𝑖
}

2
𝑁
𝑖=1                                   (7) 
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∅𝑇 =  ∑ {
𝑇𝑖

𝑜𝑏𝑠−𝑇𝑖
𝑐𝑎𝑙

𝜎𝑇𝑖
}

2
𝑁
𝑖=1                                   (8) 

where 𝜎𝑔𝑖 𝑎𝑛𝑑 𝜎𝑇𝑖 are standard deviations of 

the data errors. 

(ii) The gravity and magnetic models should 

be structurally identical in terms of the cross-

gradient function, that satisfy: 

𝜏𝑖 =  ∇𝑖𝒎𝒈 × ∇𝑖𝒎𝑻 = 0,   𝑖 = 1, . . , 𝑁             (9) 

Gallardo (2004) showed that conditions (7) 

and (8) are not always sufficient to fully 

constrain gravity and magnetic models and 

that they are still dependent, to a great extent, 

on the coverage of geophysical data 

themselves. Because of this, areas covered by 

only one data set may yet find multiple 

models that equally satisfy the data and 

cross-gradient constraints (e.g. any constant 

or parallel image). Thus, the selection of any 

of such ambiguous solutions will still require 

a priori information. As a partial remedy to 

this problem, two regularizing conditions 

were implemented in the present 

development, as described below. 

 (iii) The models should be as simple as 

possible, providing they still justify their data 

and the cross-gradient constraint. This is 

achieved using smoothness (Tikhonov & 

Arsenin, 1977) and ridge regression-type 

constraints. This last constraint serves for 

maintaining closeness to an a priori model 

and it is particularly useful for assigning 

resistivity or velocity values in areas without 

data coverage or where directly sampled 

parameter values (e.g. from rock outcrop 

characterization or borehole logging) are 

available. The corresponding term of the 

objective function is: 
 

∅𝑎𝑝𝑟 = ∑ [𝛼𝑔
2∇𝑖

2𝑚𝑔 + 𝛼𝑇
2∇𝑖

2𝑚𝑇 +𝑁
𝑖=1

(
𝑚

𝑔𝑖−𝑚
𝑔𝑖
𝑎𝑝𝑟

𝜎
𝑔𝑖
𝑎𝑝𝑟 )

2

+ (
𝑚

𝑇𝑖−𝑚
𝑇𝑖
𝑎𝑝𝑟

𝜎
𝑇𝑖
𝑎𝑝𝑟 )

2

]                        (10) 

where 𝛼𝑔
2 𝑎𝑛𝑑 𝛼𝑇

2 define the level of 

smoothness required in the models  𝑚𝑔𝑖
𝑎𝑝𝑟

and 

𝑚𝑇𝑖
𝑎𝑝𝑟

 are the parameter values for any a 

priori gravity and magnetic models with 

standard deviations 𝜎𝑔𝑖
𝑎𝑝𝑟

and 

𝜎𝑇𝑖
𝑎𝑝𝑟

respectively. The composite objective 

function for the cross gradient joint inversion 

of gravity data is: 
 

min{𝑡 = ∅𝑔 + ∅𝑇 +  ∅𝑎𝑝𝑟} 

Subject to 𝜏𝑖 = 0, 𝑖 = 1, … . , 𝑁                     (11) 

This objective function can be solved 

iteratively using the non-linear functions 

involved in (2)–(5) (Green 1984). 

The Gauss-Newton method is an effective 

method for minimizing an objective function 

iteratively. For moderately sized problems, 

the Gauss-Newton method typically 

converges much faster than gradient-descent 

methods. 

By expanding the objective function in a 

Tylor series and assigning its first order and 

second order derivatives of it equal to zero, 

Equation (12) is obtained for updating the 

perturbation h, 

[𝑱𝑇𝑾𝑱]𝒉𝑛 = 𝑱𝑇𝑾(𝒅𝒐𝒃𝒔 − 𝒅𝒑𝒓𝒆𝒅)                 (12) 

where W is a diagonal matrix whose 

elements are equal to 

𝑤𝑑𝑖𝑖 = 1/𝜎𝑖                                              (13) 

and 𝜎𝑖 is an estimated standard deviation of 

the ith datum that has three elements, 

𝑤 = (𝑤𝑔, 𝑤𝑇 , 𝑤𝑡) 

J is the Jacobian matrix and (𝒅𝒐𝒃𝒔 − 𝒅𝒑𝒓𝒆𝒅) 

is a sum of the gravity and magnetic misfit 

functions. 

∅𝑑 =  (𝒅𝒈
𝒐𝒃𝒔 − 𝒅𝑔

𝑝𝑟𝑒𝑑
) + (𝒅𝑻

𝒐𝒃𝒔 − 𝒅𝑇
𝑝𝑟𝑒𝑑

)      (14) 

Obtaining the perturbation ℎ𝑛 , the iteration 

procedure continues as follows: 

𝒎𝒏+𝟏 = 𝒎𝒏 + 𝒉𝒏                                    (15) 

 

7. Forward equations 

To compute the misfit functions in cross-

gradient joint inversion, the gravity and 

magnetic forward equations should be used 

to simulate the gravity and magnetic data set. 

 

7-1. Gravity forward equation 

The model space is parametrized by an octree 

mesh (Haber & Helmann, 2007) and then the 

predicted data would  

be the sum of the gravity effects of the  

cells in each gravity point on the ground 

surface, 

𝐹(𝒎) = 𝒅𝑝𝑟𝑒𝑑                                          (16) 

The gravity effect of each cell of the octree 

mesh is computed by applying the equation 

presented by Pluff (1976), 
 

F(m) =

 𝐺𝜌 ∑ ∑ ∑ 𝜇𝑖𝑗𝑘 [𝑧𝑘𝑎𝑟𝑐𝑡𝑎𝑛
𝑥𝑖   𝑦𝑗

𝑧𝑘 𝑅𝑖𝑗𝑘
−2

𝑘=1
2
𝑗=1

2
𝑖=1
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𝑥𝑖 log(𝑅𝑖𝑗𝑘 + 𝑦𝑖) − 𝑦𝑗log (𝑅𝑖𝑗𝑘 + 𝑥𝑖)]          (17) 

where 

𝑅𝑖𝑗𝑘 = √𝑥𝑖
2 + 𝑦𝑗

2 + 𝑧𝑘
2                                 (18) 

and  

𝜇𝑖𝑗𝑘 = (−1)i(−1)j(−1)k                             (19) 

where G is the universal gravitational 

constant and 𝜌 is the density. 

 

7-2. Magnetic forward equation 

From the related literature, the magnetization 

M and magnetic induction B are connected 

by the following equation: 

𝑩(𝑹) =  
𝜇0

4𝜋
∇ ∫ 𝑴(𝑹0) .  ∇0

1

|𝑅−𝑅0|
𝑑𝑉0           (20) 

where 𝜇0 is the permeability of the free space 

and R and 𝑅0 are the observation and source 

locations, respectively. The unit of 

magnetization is the Ampere/meter, although 

this is seldom used in geophysics and the unit 

of magnetic induction is in Tesla, which turns 

out to be a very large quantity compared to 

anything which is measured in geophysics. 

For that reason, magnetic measurements are 

almost invariably reported in nanoTeslas, 

abbreviated nT. Nearly all magnetometers in 

use today measure the total magnetic 

intensity T, which is just the magnitude of 

the magnetic induction: T = |B|. The 

magnetic induction in turn can be considered 

as being composed of the ambient earth’s 

field B0 and a component ∆B due to the 

magnetic material in the subsurface. 

Generally, but not always, ∆B is much 

smaller than B0, so we can approximate to 

first order in ∆B/ B0: 

𝑻 ≅  |𝑩0| + 
𝑩𝟎

|𝑩0|
  . ∆𝑩 =  𝑇0 + ∆𝑇               (21) 

where  𝑇0  is the normal total magnetic 

intensity and ∆𝑇 is the anomalous total 

magnetic intensity. The anomalous total 

magnetic intensity of a rectangular prism is 

computed through Equation (22) (Rao and 

Babu 1991), 
 

∆𝑇 =  ∑ ∑ ∑ 𝜇𝑖𝑗𝑘𝐺1
2
𝑘=1

2
𝑗=1

2
𝑖=1 ln(𝑅𝑖𝑗𝑘 + 𝑥𝑖) +

𝐺2ln(𝑅𝑖𝑗𝑘 + 𝑦𝑗) + 𝐺3 ln(𝑅𝑖𝑗𝑘 + 𝑧𝑘) +

𝐺4 𝑎𝑟𝑐𝑡𝑎𝑛
𝑥𝑖𝑧𝑘

𝑅𝑖𝑗𝑘𝑦𝑗
+ 𝐺5𝑎𝑟𝑐𝑡𝑎𝑛

𝑦𝑗𝑧𝑘

𝑅𝑖𝑗𝑘𝑥𝑖
               (22) 

where 𝐺1 = 𝐸𝐼(𝑀𝑟 + 𝑁𝑞), 𝐺2 = 𝐸𝐼(𝐿𝑟 +
𝑁𝑝), 𝐺3 = 𝐸𝐼(𝐿𝑞 + 𝑀𝑝), 𝐺4 = 𝐸𝐼(𝑁𝑟 −
𝑀𝑞), 𝐺5 = 𝐸𝐼(𝑁𝑟 − 𝐿𝑝), EI is magnetic 

susceptibility, r, q and p are the cosine 

directions of the magnetic field and L, M, N 

is the cosine directions of magnetization. 

 

8. Inversion results 

The up-warded residual gravity anomalies in 

Figure 3b are inverted through sparse norm 

inversion, and the cross-sections of the 

inversion results are shown in Figures 4a - 4c 

and 5a - 5c. The observed and predicted 

gravity and the difference (misfit) are 

depicted in Figures 6a - 6c, respectively. As 

it is clear, the normalized misfits are 

absolutely unacceptable.  

The residual total magnetic anomalies are 

also inverted and the cross sections of the 

results are shown in Figures 7a - 7c and 8a - 

8c. The observed predicted and misfit values 

of magnetic anomalies are depicted in 

Figures 9a - 9c.  

The cross-sections of the magnetic inversion 

through the cross-gradient method are shown 

in Figures 12a – 12c and 13a – 13c. 
 

 

 
                        (a)                                                        (b)                                                          (c) 

 

Figure 4. a), b), c), Y slices of density contrast (g/cc) obtained through sparse norm inversion. 
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                        (a)                                                        (b)                                                     (c) 

 

Figure 5. a), b), c), X slices of density contrast (g/cc) obtained through sparse norm inversion. 

 

 
                       (a)                                                  (b)                                               (c) 
 

Figure 6. a) The observed gravity anomalies (mGal), b) The calculated gravity anomalies (mGal), c) The normalized 

misfit between observed and calculated anomalies. 

 

 
                           (a)                                                    (b)                                                    (c) 
 

Figure 7. a), b), c) Y slices of susceptibility (SI) obtained through sparse norm inversion. 

 

 
                           (a)                                                    (b)                                                    (c) 

 

Figure 8. a), b), c) X slices of susceptibility (SI) obtained through sparse norm inversion. 
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                           (a)                                                 (b)                                                  (c) 
 

Figure 9. a) The observed magnetic anomalies (nT), b) The calculated magnetic anomalies (nT), c) The normalized 

misfit between observed and calculated anomalies. 

 

 
                                     (a)                                                                                   (b) 
 

Figure 10. a), b) Y slices of density contrasts (g/cc) obtained through cross-gradient inversion. 

 

 
                                     (a)                                                                                (b) 
 

Figure 11. a), b) X slices of density contrasts (g/cc) obtained through cross-gradient inversion. 

 

 
                                     (a)                                                                               (b) 
 

Figure 12. a), b) Y slices of susceptibility (SI) obtained through cross-gradient inversion. 
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                                     (a)                                                                               (b) 
 

Figure 13. a), b) X slices of susceptibility (SI) obtained through cross-gradient inversion. 
 

9. Discussion 

The first report on inverting the gravity and 

magnetic report in the survey area is 

published by Jolidehsar et al. (2021). They 

assessed the inversion results by the detected 

rock formation accessible through a bore-

hole in the area. The maximum depth of the 

bore-hole is about 420 m that can be used for 

gravity inversion results and not the magnetic 

ones.  

The detected rocks in the bore-hole and their 

average density and magnetic susceptibility 

are shown in Table 1. 

Due to the shortage of gravity observation 

points and the small size of the gravity 

network, the gravity sparse norm inversion 

results (Figures 4a – 4c and 5a – 5c) show 

unrealistic results with very low recovered 

density contrasts.   

Magnetic sparse norm inversion results in y-

cross sections (Figures 7a – 7c) demonstrate 

a dike-type character that extends to a depth 

of more than 2000 m, which is unlikely to be 

correct. The x-cross sections (Figures 8a – 

8c) are more reasonable considering the 

former geological and geophysical 

investigations. 

The gravity inversion results through the 

cross-gradient method (Figures 10a – 10b 

and 11a – 11b) show the existence of the 

anomaly from a very shallow depth to about 

400 m depth which is very close to the 

maximum depth of high-density dolomite 

(367 m) in the bore-hole. 

The magnetic inversion results through the 

cross-gradient method (Figures 12a – 12b 

and 13a – 13b) are also quite informative and 

reasonable despite the weak magnetic signal. 

Considering the average height of the ground 

surface which is about 1900 m, all cross-

sections show that the subsurface magnetic 

anomaly begins from 400 m depth from the 

ground surface and extends to the 900 m 

depth.  

The dolomite with iron oxide detected in the 

bore-hole from 123 m to 367 m depth is not 

the cause of the magnetic anomaly and the 

magnetic source is much deeper. 
 

Table 1. Bore-hole results. 

Formation 
Maximum depth of 

drilling (m) 

Average Density 

(g/cm3) 

Average Susceptibility 

𝟏𝟎−𝟔𝑺𝑰 

Quaternary deposits and 

conglomerate 
59.2 2.4  

Dolomite 82 2.7 10 

Sandstone 111 2.4 0-20 

Dolomite 123 2.7 10 

Dolomite with iron oxide 367 2.9 - 

Shale 390 2.3 63 

Sandstone 393 2.4 0-20 

Dioritic Dike 395 2.9 630 

Sandstone 397 2.4 0-20 

Shale 409 2.3 63 

Dolomite 420 2.7 10 
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10. Conclusions 

The inverted gravity and magnetic data sets 

through sparse norm inversion provide weak 

results that are unrealistic. Applying the 

cross-gradient joint inversion provides much 

more reasonable and realistic results that are 

consistent with the geological and 

geophysical evidence in the survey area. 

The inverted magnetic data through the 

cross-gradient method provides valuable 

results about the depth and geometrical shape 

of the causative body that is absolutely new 

and were not obtained by former geophysical 

research and magnetic inversion. A deep 

future bore-hole that reaches a depth of 1000 

m can provide important information about 

the source of the magnetic anomaly. 
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