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Abstract 
This paper deals with the one-dimensional discrete wavelet transform (1D DWT) of four scaling 
coefficients are computed numerically by designing a convolutive operator. 

The near-zone contribution of the integral is calculated through wavelet transform and for the far-
zone contribution the classic expansion of the spherical harmonics applied. 

Finally the geoidal heights are determined over a territory in Canada.  
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1 INTRODUCTION 
The ellipsoidal Stokes integral as the solution of 
the ellipsoidal Stokes boundary-value problem 
was first defined by Martinec and Grafarend 
(1997). The direct numerical solution of the 
integral was expressed by Ardestani and Martinec 
(2000). 

The direct numerical computation of the 
integral involves expose a relatively long and time 
consuming process considering the singularity of 
spherical and ellipsoidal Stokes functions. 

Wavelet transform as a new tool for spectral 
solution of the integral could be quite fast and 
efficient. 

Wavelet exhibits excellent localization 
properties that facilitate regional update  
and therefore the new observation can be used 
quickly up-date geoidal heights (Salamonowicz, 
1999). 

Moreover, we have quite a free hand to define 
the basis functions and corresponding coefficients 
in contrast to the Fourier transform which uses 
sine or cosine as the base functions. 

 
2 DISCRETE WAVELET TRANSFORM 
A wavelet is a small wave which has its energy 
concentrated in time or space to give a tool for 
analysis of transient, non-stationary or time, 
space-varying 
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where both j and k are integer indices and the 

ψ(x) are the wavelet expansion that usually form 
an orthogonal basis. The two-dimensional 
parameterization is achieved from the function 
(mother wavelet),  
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where indices j and k represent the dilation and 
translation parameters respectively. M is the 
maximum value of dilation. There are many 
different family of wavelets such as Daubechies, 
Coilfet etc. 
 
3 CONVOLUTIVE OPERATOR 
We aim to design the wavelet functions in such a 
way that we get a convolutive operator. We begin 
with continuous wavelet transform of f(x). 
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The inverse continuous wavelet transform 
will be 
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The convolution of two functions g and h 

means, 
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Considering equation (5) yields, 
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Substituting equation (7) into eqn. (6) we 
have, 
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where for a convolutive operator and 
satisfying the following equation, 

)b,a(H)b,a(G)b,a(F =                               (9) 

the wavelet function ψ has to be defined in 
the form that, we are able to write, 
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Our approach to designing the convolutive 
operator is based on defining three known 
matrices G, D, N in such a way that the image of 
the elements of N in frequency space is equal to 
the multiplication of the image of the 
corresponding elements of G and D. 

In other words, the problem is firstly assumed 
solved with a small value and then improved. The 
equations of the 2-D wavelet transforms (Burrus 
et al, 1998) are 
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where h and 1h  are down-sampling and up-
sampling filters respectively. Supplying equation 
(11) and considering matrices D, G and N as a 
series, ),L,K(f 1j+  

the following system of equations would be 
generated, 

),m,n(g)m,n(f jj =                                     (15) 
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),m,n(hd)m,n(gd)m,n(fd 2j2j2j +++ =  (17) 

).m,n(hd)m,n(gd)m,n(fd 3j3j3j +++ =   (18) 

Substituting m,n=0,1,2 we would have 15 
independent equations with an unknown 
parameter (α) (Burrus et al, 1998). 

By solving this non-linear system of 
equations numerically, the unknown parameter 
(α) and consequently the scaling coefficients 
would be determined as follows, 

 
h0=0.01163397861446,   h1=-0.01126316017171, 
h2=0.69547280257209,    h3=0.71836994135826. 
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4 ELLIPSOIDAL STOKES INTEGRAL 

The ellipsoidal Stokes integral (Martinec and 
Grafarend, 1997) is 
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where x is the angular distance between directions 
Ω and Ω' , S(x) and are the spherical and 
ellipsoidal Stokes functions and, ),(Sell ΩΩ  is the 
geoidal heights. ),b(N 0 Ω  

Due to the lack of gravity anomaly f(Ω') on 
some parts of the globe, the integral is split into to 
the near-zone and the far-zone contributions, 
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Is the near-zone contribution and ),b(N 0
0x Ω  

where is the far-zone contribution. ),b(N 0
0xπ Ω− . 

 
5 NEAR-ZONE CONTRIBUTION 

Computing the near-zone contribution of N, we 
have  
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implementing 1D DWT, we have, 
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where ΔΦ and Δλ are grid intervals in the 
directions of co-latitude and longitude  

 
6 FAR-ZONE CONTRIBUTION 

Computing the geoidal heights of far-zone 
contribution considering equation (19), we have 
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This integral can be considered as a spherical 
Stokes integration extended by the term related to 
ellipsoidal contribution. We now split this integral 
as follows, 

.αdχdχsin

)',(Se)'(f
πγ4

bαdχdχ

sin)χ(S)'(f
πγ4

b),b(N

ell2
0

π

χ

π2

0
0

π

χ

π2

0

0
0

χπ

0

0

0

ΩΩΩ−

Ω=Ω

∫ ∫

∫ ∫−

(24) 

Since the magnitude of the second part is 
small, we approximate the far-zone contribution 
by just taking the first part of the right-hand side 
of equation (24) into account. 

According to Heiskanen and Moritz (1967, 
equation (7-35)) we have, 
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where ),b(N 0
0xπ Ω−  are the geoidal heights of 

the far-zone contribution, )x(Q 0j  are the 
Molodenkij truncation coefficients (Molodenskij, 
et al. 1960), jmf  could be determined by a global 
geopotential model (GGM, Heiskanen and 
Moritz, (1967)). 

 
7 NUMERICAL RESULTS 

Computing the near-zone contribution through 
equation (22) and by four computed scaling 
coefficients and the far-zone contribution by 
equation (25), the geoidal heights over an area in 
Canada (figure 1) are determined. 

Instead of f (Ω'), we used Helmert gravity 
anomalies in the (5',5') grid model. 

We also computed the geoidal heights by 
wavelet transform of the near-zone contribution 
through Daubechies' transform (Burrus et al, 
1998) with wavelet coefficients as follows, and 
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adding (table 1). to far-zone contribution equation 
(25), figure 2). 

It is clear that are almost the same and quite 
smooth. 

In the next part we computed the near-zone 
contribution through (Ardestani and Martinec, 
2000), 
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and the far-zone contribution is computed by  
 

using equation (25) and the results are illustrated 
in figure 3. 

Figure (3) clearly shows more details of 
geoidal heights than figures (1) and (2) which 
demonstrate the long-wavelength part of the 
geoidal heights. 

 
8 CONCLUSIONS 

Discrete wavelet transform is quite fast and if we 
apply it for near-zone contribution, the known 
coefficients such as Daub4 gives the same results 
as the computed coefficients of the convolutive 
operator. 

However, the details of the geoid seems not 
to be declared through standard wavelets. 

Therefore, considering the spherical wavelets 
(Freeden and Windheuser 1996) seems to be 
necessary and we hope to report on it in the near 
future. 

Table 1. Daubechies N=4. 

h1(n) h (n) N 
0.12940952255126 0.48296291314453 0 
0.22414386804201 0.83651630373781 1 
-0.83651630373781 0.22414386804201 2 
0.48296291314453 -0.12940952255126 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Geoidal heights (meter). 
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Figure 2. Geoidal heights (meter). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Geoidal heights (meter). 
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