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Abstract 

Inverse problem is one of the most important problems in geophysics as model 

parameters can be estimated from the measured data directly using inverse techniques. 

In this paper, applying different inverse methods on integration of S-wave and GPR 

velocities are investigated for estimation of porosity and water saturation. A 

combination of linear and nonlinear inverse problems are solved. Linear least-squares 

and conjugate gradient are used as linear techniques, whereas grid search and Newton 

methods are selected as nonlinear ones. It is understood that vS depends on density and 

Lame Constant (shear modulus) and vGPR on dielectric constant. This combination seems 

to be logical. Shear modulus is related to porosity using Bruggeman’s rule. Density and 

dielectric constant is also related to porosity and water saturation. This implies that vS 

and vGPR are bivariate functions of porosity and water saturation, which are our unknown 

model parameters. The model parameters are estimated to minimize the cost functional 

ora system of the equations. In order to convert the nonlinear problem into the linear 

form, taking logarithm and changing variables were used. The problem was convex, 

which was inferred from the linear form, so there was just one local minimum as the 

global minimum of the problem. The grid search method shows that porosity and water 

saturation cannot be estimated by vGPR or vS uniquely. The results of the four methods 

were compared with each other and a good agreement was observed. 
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1. Introduction 

The goal of inverse theory is to determine 

model parameters from observations 

(Boulanger and Chouteau, 2001). Based on 

the problem one or more inverse techniques 

can be used. In one point of view, inverse 

problems can be divided into two classes: 

continuous and discrete. However, 

continuous inverse problems have to be 

converted into discrete ones, because data 

are measured discretely in the field and 

computers can deal just with digitized 

inputs. There are many methods to convert 

continuous inverse problems into their 

discrete forms. The simplest method is 

midpoint rule which can be found in Aster et 

al. (2005). In another point of view which is 

more important, inverse problems can be 

classified into two main classes: linear and 

nonlinear inverse problems which are more 

complicated. There are many linear inverse 

methods such as classic least-squares, SVD, 

Tikhonov regularization and conjugate 

gradient. Many techniques for solving 

nonlinear inverse problems need to linearize 

the system of equations. Some techniques 

like taking logarithm from the equations and 

changing variables execute the linearization 

at first and then use the solving techniques 

related to linear inverse problems, but some 

other techniques like Gauss-Newton execute 

the linearization during their algorithms.  

There are also some techniques like grid 

search that do not need linearization. This 

method is useful when the numbers of the 

model parameters are small and are limited 

to an interval like [a, b]. In this paper, 

minimization of a cost function is targeted 

such that a quantitative integration of the vS 

and vGPR to estimate porosity and water 

saturation is derived. These parameters were 

estimated using stochastic rock- physics 

modeling (Bachrach, 2006). Dannowski and 
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Yaramanci used the combination of 

geoelectric and GPR to estimate porosity 

and water saturation (Dannowski and 

Yaramanci, 1999). In order to use this 

minimization, two linear and two nonlinear 

techniques are applied and the results are 

compared. 
 

2. Methodology 

At first, the problem are defined and then the 

interested inverse methods are introduced 

and applied on our problem. 
 

2. 1. Definition of the problem 

For shallow subsoil, the estimates of in-situ 

porosity and water saturation are important, 

but until now it has been difficult to estimate 

these reliably (Ghose and Slob, 2006). We 

want to obtain these parameters using the 

velocity integration of seismic and EM 

waves. Seismic S wave velocity is 

dependent on shear modulus and density of 

the medium as: 
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where µ and ρ are bulk shear modulus and 

density of the medium, respectively.  

GPR wave velocity is usually dependent 

on dielectric constant of the medium and can 

be calculated as: 
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where c is the speed of light in free space and 

ϵb is the dielectric constant of the medium. 

Lame constants are related to porosity and 

water saturation by using Bruggeman 

mixing rule (Sihvola, 1999). This can be 

expressed as: 
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where X represents λ and µ, the subscripts b, 

s, w and a indicate the effective bulk 

property, and the properties of the 

constituent solid, water and air phases, 

respectively. The effective bulk values are 

obtained by solving Equation (3) with an 

appropriate root finding routine (Ghose and 

Slob, 2006). Bulk density and dielectric 

constant can be related to porosity and water 

saturation by power law: 

𝑌𝑏
𝛼 = (1 −  ) 𝑌𝑠

𝛼 +   𝑆𝑤𝑌𝑤
𝛼 + 

(1 − 𝑆𝑤) 𝑌𝑎
𝛼                                                                  (4) 

where Y stands for ϵ with α=0.5 for sandy 

soils with little clay content (Complex 

Refractive Index Method or CRIM; Birchak 

et al., 1974) and α=0.65 for clayey soils 

(Wang and Schmugge, 1980), and Y stands 

for ρ with α=1 the subscripts are same as in 

Equation (3). We have used the CRIM 

model for our case, because it provides 

accurate values for ϵb for many soil types 

(Ghose and Slob, 2006). Based on what was 

stated above, it can be said that vS and vGPR 

are bivariate functions of porosity and water 

saturation. Our integrated cost functional 

problem is defined as bellow: 
1/
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β=1 is for L1 norm (absolute error) and β=2 

is for L2 norm (global root-mean-square 

error). ),( w

m

EM SV   and ),( w

m

S SV   are predicted 

velocities for GPR and seismic methods and 
data

EMV  and data

sV  are also velocity data for GPR 

and seismic methods, respectively. In fact, 

the normalized residual values are 

considered. The cost functional is minimized 

to obtain estimates for porosity and water 

saturation. This minimization is done using 

different inverse techniques in the following 

of this paper and the results are compared. 

 

2. 2. Applying inverse techniques 

In this section two linear and two nonlinear 

techniques are introduced and applied on our 

problem. At first, we apply nonlinear 

techniques because of the nonlinear nature 

of the problem and then the problem is 

linearized and finally two well-known linear 

inverse methods are applied. 

 

2. 2. 1. Nonlinear inverse methods 

Two nonlinear inverse methods are grid 

search and Newton techniques: 

Grid search. One strategy for solving a 

nonlinear inverse problem is to exhaustively 

consider “every possible” solution and pick 

the one with the smallest error (Menke, 

2012). When the trial solutions are drawn 

from a regular grid in model space, this 

procedure is called a grid search (Menke, 

2012). Grid searches are most practical 

when 

1. The total number of model parameters 
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is small, say M < 7. The grid is M-

dimensional, so the number of trial solutions 

is proportional to LM, where L is the number 

of trial solutions along each dimension of the 

grid (Menke, 2012). 

2. The solution is known to lie within a 

specific range of values, which can be used 

to define the limits of the grid (Menke, 

2012). 

3. The cost function is smooth over the 

scale of the grid spacing so that the 

minimum is not missed through the grid 

spacing being too coarse (Menke, 2012).  

In applying this method on the problem, 

the exact form of Equation (5) is chosen for 

β=1 and β=2. 

Newton method. In order to apply 

Newton method on the problem, two terms 

in Equation (5) are considered separately for 

β=1 and the denominators and absolutes of 

the terms are not required for applying 

Newton method. Thus a system of equations 

like F(x)=0 with two equations and two 

model parameters exists which is very 

appropriate to be dealt by Newton method. 

Given a system of equations F(x) = 0 and 

an initial solution x0, repeat the following 

steps to compute a sequence of solutions x1, 

x2,… . Stop when the sequence converges to 

a solution with F(x) = 0. 

1. Use Gaussian elimination to solve 

∇F (xk)∆x = - F(xk) 

2. Let xk+1 = xk + ∆x 

3. Let k=k+1.      

 

2. 2. 2. Linear inverse methods 

As it is known the problem is nonlinear, but 

it can be converted into a linear problem by 

some mathematical tricks and changes in the 

variables. From Equation (2) and CRIM 

model, the following relation can be 

extracted:
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Equation (6) is equivalent to the following 

relation: 

111 CYBXA                                              (8) 

The same procedure can be done for 

Equation (1) by using power law and we 

have: 
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by assuming relations at below, 
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Equation (9) is as: 

222 CYBXA                                         (11) 

Therefore, by combining the seismic and 

GPR velocities, a system of equations with 

two equations and two model parameters is 

derived: 
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Now, the problem is a linear one and 

linear techniques can be utilized to solve it. 

Linear least-squares and conjugate gradient 

methods are applied on this small linear 

systems of equations (two equations and two 

model parameters). In conversion of the 

problem into the linear inverse problem, 

linearization approximation is not used. So 

the new linear system of equations is 

equivalent to the nonlinear system of 

equations. The data kernel matrix of the 

above system of equations is a positive 

definite matrix, so our problem is convex 

and any local minimum found for the inverse 

problem is global minimum. Consequently, 

it can be concluded that the solution founded 

by using the above techniques is the only 

solution of our problem. 

Least-squares method: For a system of 

equations Gm=d the least-squares solution 

can be found by the following formula: 

mest =(GTG)-1GTd                                                      (13) 

The only required condition for using this 

classic method is that G matrix be full 

column rank matrix. In our system of 

equations G is full rank matrix, thus, the 

problem has the necessary condition for the 

least-squares technique.  

Conjugate gradient (CG) method: 

conjugate gradient method is an iterative 

inverse technique to solve a symmetric and 

positive definite system of equations that its 

algorithm does not need to calculate the 
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inverse matrix of G. Like every iterative 

inverse method, conjugate gradient has 

special application for problems with large 

matrices. However, the matrix of our 

problem is very small.  

Conjugate gradient algorithm for a 

positive definite and symmetric system of 

equations Ax = b, and an initial solution x0, 

p0=r0=b−Ax0. Repeat the following steps 

until convergence occurred. 

1. Let α k=(r kT r k) / (p k A p k). 

2. Let xk+1=x k+ α k p k. 

3. Let rk+1=r k – α k A pk. 

4. Let βk=(r k+1
T r k+1) / (r kT r k). 

5. Let pk+1=r k+ α k p k. 

A major advantage of the CG method is 

that it requires storage only for the vectors 

xk, p k, r kand the matrix A (Aster et al., 

2005). In theory, the algorithm finds an 

exact solution to the system of equations in 

n iterations -A is an n by n matrix for the 

algorithm (Aster et al., 2005). In practice, 

because of round-off errors in the 

computation, the exact solution may not be 

obtained in n iterations (Aster et al., 2005). 

 

3. The numerical results model 

The model consists of two layers: sand and 

shale. The focus is on the second layer and 

by knowing the vS and vGPR of this layer, the 

calculation of the model parameters 

(porosity and water saturation) using 

different inverse methods. However, the 

same work can be done for the first layer and 

its model parameters can also be estimated. 

In the following, numerical results related to 

applying different inverse method are 

represented. 

At first, each of the two terms in Equation 

(5) are considered exclusively and it can be 

observed that none of them can give the 

porosity and water saturation of the medium 

solitary, but combining the two terms give us 

model parameters uniquely. All of the 

related results are in figures 1 to 4 (color bars 

are in terms of dB). The estimated porosity 

and water saturation for β=1 are 33% and 

60% and for β=2 are 33% and 61%, 

respectively. Therefore, the difference 

between the results of the norms is trivial 

and they are in good agreement. 
 

 
Fig. 1. Cost functional of vs. The green line is 

indicative of local minima. Model parameters 

can’t be estimated uniquely by vs cost 

functional. 

 
Fig. 2. Cost functional of vGPR. The green line is 

indicative of local minima. Model parameters 

can’t be estimated uniquely by vGPR cost 

functional. 

 
Fig. 3. Cost functional of vs + vGPR for β=1. In contrast 

to Figs. 1 and 2, model parameters can be 

estimated uniquely. 

 

Fig. 4. Cost functional of vs + vGPR for β=2. In contrast 

to Figs. 1 and 2, model parameters can be 

estimated uniquely. The results for model 

parameters are in good agreement with Fig. 3. 
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Table 1. Layer parameters 

 Vs (m/s) VEM (m/s) ρ (g/cc) ɸ (%) Sw (%) ơ (s/m) 

Layer 1 sand 1500 5.7×107 1.40 40 60 0 

Layer 2 shale 1400 6.1×107 1.18 30 65 0 

 
Table 2. Converging trend of the Newton algorithm to the unique solution of the problem 

 1 2 3 4 5 6 7 8 9 

Φ = x(1) 0.3551 0.3384 0.3302 0.3050 0.3004 0.3003 0.3003 0.3003 0.3003 

Sw = x(2) 1.7008 -0.0755 0.3344 0.5512 0.6089 0.6115 0.6115 0.6115 0.6115 
 

 
Table 3. Converging trend of the CG algorithm to the 

unique solution of the problem 

 0 1 2 3 4 

X=Φ*Sw 0 0.1883 0.1828 0.1828 0.1828 

Y=Φ 0 0.2973 0.3008 0.3008 0.3008 

 

Newton method. The MATLAB code 

that is written for Newton algorithm needs to 

run in six iterations to be converged. The 

estimated model parameters are 30% for 

porosity and 61% for water saturation. Initial 

solution chosen to start the algorithm is 10% 

for both model parameters, means x0 = [0.1; 

0.1]. The converging trend of the algorithm 

is shown in Table 2. 

Least-squares method. If one substitute 

the corresponding values for the known 

parameters in Equation (13), the following 

linear system of equations is derived: 









7.6564.15767.998

41.05.38

YX

YX                              (14) 

Using relation (6), the obtained estimates 

for porosity and water saturation are 30% 

and 61%, respectively. They are same as the 

estimated values from Newton technique. 

Conjugate gradient (CG) method, this 

method is applied on Equation (14) and the 

converging trend of the algorithm to the 

unique solution of the problem is shown in 

Table 3. Estimated values for porosity and 

water saturation are 30% and 61%, 

respectively, which are same as the two 

previous methods (Newton and LS methods) 

and have little difference with grid search 

method for both norms. As can be observed 

from Table 3, the algorithm reaches the 

convergence in two iterations (hvaing two 

model parameters), which is not seen usually 

in practice. Here it is occurred, because 

number of the model parameters and 

equations is very small, consequently round-

off errors are very small to make slow the 

converging trend of the algorithm. The 

second column of the Table 2 is the initial 

solution for algorithm. 
 

4. Discussions 
Two subjects can be discussed here: 1. 

combination of the vs and vGPR to estimate 

porosity and water saturation uniquely, 2. 

importance of linearization of the nonlinear 

inverse problems. 
 

4. 1. Combination of the vs and vGPR to 

estimate porosity and water saturation 

uniquely 

It should be noted that seismic and GPR 

methods have different criteria to distinguish 

earth layers. Thus, the studied model in this 

paper is an ideal model and it can’t be seen 

in practice. For instance, the first layer in 

seismic is in depth of 5 (m) but for GPR 

depth of the first layer is in 2 (m), therefore, 

the layer bounds do not correspond with 

each other. This is the most important 

problem that challenge the method for 

practical applications. The only solution for 

this problem is to make a joint model so that 

the boundary of the layers of this joint model 

are in an increasing trend. For the previous 

example, the boundaries of the joint model 

are in 2 and 5 (m) respectively. This is a 

theoretical solution for the problem might 

works in practice. Another important 

problem is to select the values of Lame 

constants and dielectric constant for solid 
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part of the medium, because the values in 

tables are for solids in their ideal states and 

these ideal states cannot be found in real 

world and, therefore, this affects our results. 

If the method works well in practice for 1-D 

estimation of porosity and water saturation, 

it will work for 2-D and 3-D cases. 

 

4. 2. Importance of linearization of the 

nonlinear inverse problems 

One of the advantages of linearization is that 

applying linear inverse methods is easier 

than nonlinear techniques. In this paper 

advantage of the linearization has been 

shown. Conversion of the problem into a 

linear system of equation as Ax=b indicated 

that the A matrix was a positive definite 

matrix and concluded that the problem has 

just one local minimum which is also global 

minimum. This matter can’t be extracted 

from the system of equations in nonlinear 

form. 

It can be asserted that the best conversion 

of nonlinear inverse problem to linear one is 

done by taking logarithm and changing 

variables, because linearization 

approximations are not used and the 

corresponding linear form is equivalent with 

nonlinear inverse problem. However, these 

techniques cannot be done for all of the 

nonlinear inverse problems. 

 

5. Conclusions 

For shallow subsoil, the estimates of in-situ 

porosity and water saturation are important. 

Both of them can be estimated uniquely by 

combining velocities of seismic and ground 

penetrating radar methods. This 

combination and finding porosity and water 

saturation (model parameters) produces a 

nonlinear inverse problem. A two layered 

model (first layer: sand, second layer: shale) 

was used and our focus was on the second 

layer. Here these model parameters were 

estimated by different inverse methods. Two 

different works were done in this paper: 1) 

estimation of porosity and water saturation 

by combining seismic and GPR methods, 2) 

applying different inverse methods on the 

problem and comparing the results as the 

main purpose of this paper. Two linear and 

two nonlinear inverse techniques were used. 

To convert the problem into linear form, 

taking logarithm and changing variables 

were employed. The problem was convex, 

which was inferred from the linear form, so 

there was just one local minimum as the 

global minimum of the problem. Classic 

least squares and conjugate gradient were 

used as linear methods and Newton and grid 

search were applied as nonlinear techniques. 

The results were compared with each other 

and they show a very good agreement. The 

most challenging matter for applying the 

method in practice is that the layer bounds in 

seismic and GPR methods does not 

correspond with each other. It can be 

concluded that conversion of the problem 

into linear one and solving it is very better 

than solving it in its nonlinear form. 
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