
Journal of the Earth and Space Physics, Vol. 44, No. 4, Winter 2019, P. 1-18 

DOI: 10.22059/jesphys.2018.244979.1006938 

 

Investigation of Geostrophic and Ekman Surface Current Using Satellite Altimetry 
Observations and Surface Wind in Persian Gulf and Oman Sea 

 
Farzaneh, S.1*, Parvazi, K.2 and Noroozi, T.3 

 
1. Assistant Professor, Department of Surveying and Geomatics Engineering, Faculty of Engineering,  

University of Tehran, Iran 
2. Ph.D. Student, Department of Surveying and Geomatics Engineering, Faculty of Engineering, University of Tehran, 

Iran 
3. M.Sc. Student, Department of Surveying Engineering, faculty of Engineering, University of Zanjan, Zanjan, Iran 

 (Received: 11 Nov 2017, Accepted: 6 Feb 2018) 

 
Abstract 
The rise of satellite altimetry is a revolution in the ocean sciences. Due to its global coverage and 
its high resolution, altimetry classically outperforms in situ water level measurement. Ekman and 
geostrophic currents are large parts of the ocean’s current, playing a vital role in global climate 
variations. According to the classic oceanography, Ekman and geostrophic currents can be 
calculated through the pressure gradient force as well as the friction force assuming that the 
water’s density is constant. Investigation of Ekman and geostrophic currents existence along with 
the determination of their velocities can profoundly affect the various events of oceanography and 
different interactive processes between the atmosphere and the ocean. Additionally, the 
measurement of sea currents can be useful in determination of contamination transport, seawater 
exchange, fisheries, oil transfer, immigration of aquatic animals and several marine activities (e.g. 
military, telecommunication, fishing and research activities) and also has different effects on the 
regional climate. In the current study, local and climatic conditions, Ekman and geostrophic 
currents and their velocities have been investigated based on the solution of Ekman and 
geostrophic equilibrium equations in the region of the Persian Gulf and the Oman Sea. To this end, 
using data of Saral and Jeason-2 altimetry satellites and surface wind data measured by ASCAT 
satellite, velocities values of v and u as well as the value and the direction of Ekman and 
geostrophic currents were extracted in forms of monthly data. The results were compared with 
obtained measurements by AVISO and NOAA for the region of the Persian Gulf and the Oman 
Sea, and based on the obtained results of this study, the difference in the value of these currents is 
about 1 cm/s.  
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1. Introduction 
The Persian Gulf and the Oman Sea benefit 
from a special location due to their specific 
climatic features. The Oman Sea is in a direct 
connection to the Arabian Sea and the Indian 
Ocean and is known as a deep sea. On the 
other hand, the Persian Gulf is a semi-closed 
and shallow marine environment connected 
to the Oman Sea by the Strait of Hormuz and 
is known as one of the most important 
waterways in the world, from economic and 
political viewpoints. Study of currents of the 
Persian Gulf and the Oman Sea is so vital 
because of their effects on the regional 
climate, the environment, fisheries, shape 
change of coastal areas, maritime 
transportations as well as affecting oil and 
non-oil pollution movements. Today, by the 
development and expansion of satellite 
observations, the trend of sea surface currents 

can be extracted using physical and 
mathematical methods (Fleet and Weiss, 
2005; Bowditch, 2012).  
Ocean surface currents are mainly due to 
winds and their effects are dominant in upper 
layers, while the density-induced currents 
mainly affect deeper parts of the ocean 
(Aken, 2007). According to the movement 
direction of upper layers, the direction of sea 
surface currents can be realized, which are 
beneficial for determining climate changes as 
a condition in ocean’s boundaries for the 
atmospheric models (Reynolds and Smith, 
1994). Two important factors standing out 
the most are the wind force and the water 
density difference giving rise to the creation 
of sea surface currents (Dawe and 
Thompson, 2006), (Zonn et al., 2010). 
Moreover, other factors can also lead to the 
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changes in the sea surface currents including 
water’s depth, seabed topography, land 
dimensions and positions (Bowditch, 2012). 
In this regard, the knowledge of Ekman and 
geostrophic surface current changes is 
essential for realizing oceans dynamics and 
mechanism as well as mass and heat transfer.  
By now, several studies have been performed 
based on the values of altimetry data and the 
effect of the wind on the water surface 
movement in the field of ocean currents. 
Scharffenberg and Stammer (2010) presented 
the obtained results of the consecutive 
missions of Jason-TOPEX/Poseidon satellite 
for local structure of current annual changes 
in a global scale. Nunsen (1898) presented 
the theory of the wind stress-induced current, 
which discussed the fact that ice mountains 
in the Polar Regions in the northern 
hemisphere did not move in the wind 
direction, but they deviate. The value of the 
movement deviation was reported by Nunsen 
as 20-40° to the right of wind direction. 
Sverdrup (1947) indicated that the current in 
long distances at top of the ocean is directly 
connected with the wind stress. Stommel 
(1948) showed that the current in the oceanic 
cycle is asymmetric due to the fact that the 
Coriolis force changes with the latitude. 
Munk (1950) calculated the current at upper 
layers of the Pacific Ocean by adding the 
vortex viscosity.  
The aim of this work is to calculate 
geostrophic surface currents by the balance 
between the Coriolis force and the horizontal 
pressure gradient through observations of 
Topex satellite altimetry as well as measuring 
Ekman surface currents by the equilibrium 
between the Coriolis force and the friction 
force using calculated surface wind data. To 
this end, the distance of the satellite from the 
sea surface is calculated from observations of 
Saral and Jeason-2 altimetry satellites and 
thereby the gridded data of sea surface height 
(SSH) is created. One application of the SSH 
is the extraction of geostrophic surface 
currents (Deng et al., 2011). To this end, 
first, the absolute dynamic topography 
(ADT) is achieved by the difference between 
the SSH and the geoid (AVISO, 2012), and 
finally, the geostrophic surface current is 
calculated regarding the absolute dynamic 
topography. In association with the 
geostrophic surface current, within oceans 

and far from the upper and lower parts of 
Ekman layers, both pressure gradient and 
Coriolis forces are in equilibrium for usually 
long distances and for a certain time. This 
equilibrium is known as the geostrophic 
equilibrium (Stewart, 2009). In order to 
explain the water movement induced by the 
wind drift resulting from the wind stress on 
the water surface, Ekman theory that is one 
of the theories used in oceanic circulation 
study due to the wind drift is also used. 
Ekman (1905) suggested that under certain 
conditions (stable conditions), wind uniform 
stress, Coriolis force and friction force are in 
equilibrium in the surface layer (Nitta and 
Yamada, 1989). With the increase of depth in 
Elman layer, the current deviation is created 
due to the Coriolis force. Surface currents 
that are created due to the wind, deviate 45° 
toward the right and the left direction of the 
wind in the northern and southern 
hemisphere, respectively (Stewart,2009).  
 
2. Data 
In this work, in order to determine the geoid 
altimetry data (Saral, Jason-2), sea surface 
height and daily data of satellite wind speed 
ASCAT as well as the wind speed and its 
direction, three datasets including geoid data 
EGM08 (earth gravity model) were utilized. 
In order to access the geoid, satellite 
altimetry and surface wind speed data, three 
websites, namely, “http://icgem.gfz-
potsdam.De/ICGEM/”, 
“http://www.aviso.oceanobs.com” and 
“http://oceanwatch.pifsc.noaa.gov” were 
used respectively. In the following sections, 
this aforementioned data will be briefly 
introduced. 
 
2-1. Geoid 
In this study, the presented geoid by ICGEM 
service in the region of the Persian Gulf and 
the Oman Sea was used. These data are for 
an oval WGS84 with the equatorial radius of 
6378.1363 km and the compression 
coefficient of 1/298.257. Considering the 
EGM08 model and determining 0.5-degree 
grids in the region  
of the Persian Gulf and the Oman Sea 
(latitude of 22-31° North and longitude of 
47-65° East), the geoid height data can be 
extracted. Figure 1 illustrates the obtained 
geoid in the region of the Persian Gulf and 
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The water movement induced by the  
wind drift is expressed by Ekman theory 
(theories which can be used in the ocean 
circulation). Being aware of dynamic effects 
of the bed friction on the water current  
and the surrounding environment, it  
is necessary to recognize features of  
the boundary layer, dubbed “Ekman layer”. 
The Ekman layer is a layer located between 
the geostrophic current and the solid 
boundary, and the friction effect is so critical 
at this layer. This layer is formed in the  
lower part of the atmosphere and the seabed 
(Apel, 1990). In addition to Ekman layer  
in the seabed, another Ekman layer  
also exists on the sea surface which is due  
to the surface wind stress and is formed  
in the upper part of the seawater. Indeed, 
constant wind on the sea surface results in  
a horizontal boundary layer. This thin layer  
is the Ekman layer. Ekman (1905) suggested 
that under certain conditions (stable 
conditions), an equilibrium exists among  
the wind uniform stress, the Coriolis force, 
and the friction in the surface layer (Nitta and 
Yamada, 1989).  
The velocity of the Ekman surface current 
( ܷ = ݑ +  ) in orbital or eastwardݒ݅
component terms ue, and meridional or 
northward component ve, along the east 
direction (x) and north direction (y), directly 
conforms to Ekman equations for the 
equilibrium between the friction force and 
the Coriolis force, in the form of Equation 
(14) (Apel, 1990). 
ݒ݂  + ߩ1 ߲ ௫ܶ௭߲ݖ = ݑ݂ 0 − ଵఘ డ்ೣ డ௭ = 0					                                        (14)	 
 

Where f is the Coriolis parameter and  
equals to 2ߗ sin߮. The solution of Equation 
(14) can be considered as follows (Apel, 
ݒாܦ݂− :(1990 = ݑߛ− + ଵఘ ௫ܶ௭                                  ݂ܦாݑ = ݒߛ− + ଵఘ ௬ܶ௭						                               (15) 

where γ is a linear drag coefficient that shows 
vertical viscosity terms as the body force  
on Ekman components; ue and ve are 
components of Ekman surface velocity  
in directions of x and y respectively; Txz  
and Tyz are components of the stress 

components of the wind in the directions  
x and y; ρ is the seawater density equal  
to 1025 kg/m3 and DE is the Ekman  
layer depth. The Ekman layer depth is 
considered as the effective depth of the wind 
drift current and is expressed by Equation 
ܧܦ .(16) = 7.6ඥsin|߮| ܷ10                                              (16) 

Where φ is the latitude and U10 is the wind 
speed at a height of 10 meters above the sea 
surface. By the increase the Ekman layer 
depth, the current deviation occurs due to the 
Coriolis force. Ekman surface currents 
deviate 45° to the right and left direction of 
the wind on the surface, in the northern and 
southern hemisphere, respectively (Stewart, 
2009).  
Ue refers to the Ekman current component 
and can be calculated by Equation (17): (݂݅ܦா + (ߛ ܷ = ܶ                                          (17) 

Where ܷ = ݑ + ܶ  andݒ݅ = ( ௫ܶ௭ + ݅ ௬ܶ௭) ⁄ߩ , T is the kinematic stress 
which has been calculated by considering ρ = 
1025 kg/m3. In order to calculate the Ekman 
velocity, Ue, Equation (18) can be used 
(Stewart, 2009). ܷ݁ = ܽ1ܶ                                                    (18) 

Equation (18) can be rewritten in the form of 
Equation (19). ܽ1 = ߛ+ܧܦ1݂݅ =  (19)                                2ܧܦ2݂+2ߛܧܦ݂݅−ߛ

Where coefficient of ܽଵ is the reverse 
velocity dimension and refers to the scale of 
the kinematic wind stress, and ܽଵ ⁄ߩ  with the 
dimension of ms-1Pa-1 refers to the scale and 
dynamic wind stress. The real and the 
imaginary terms represent velocity 
components which are parallel and 
perpendicular to the wind stress respectively. 
When ݂ → 0, the imaginary term would be 
zero and the real term tends to (ܽଵ) → 1 ⁄ߛ , 
in this situation, the equatorial Ekman current 
depends on the lower part of the wind and the 
amplitude relative to the wind stress is 
determined by the reverse of the drag 
coefficient. The coefficient of  ܽଵ is 
experimentally estimated according to 
Equation (18) using multiple linear 
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Table 2. Comparison results of the calculated Ekman currents by data of the surface wind with the calculated Ekman 
currents by NOAA. 

Months Names 
Calculated Ekman 

Current By Data of the 
Surface Wind (m/s)

Calculated Ekman 
Current by 

NOAA(m/s)
Difference (m/s) 

January 0.0109 0.0196 0.0087 
February 0.0114 0.0204 0.009 

March 0.0100 0.0194 0.0094 
April 0.0092 0.0168 0.0076 
May 0.0104 0.0178 0.0074 
June 0.0117 0.0202 0.0085 
July 0.0115 0.0190 0.0075 

August 0.0108 0.0181 0.0073 
September 0.0100 0.0173 0.0073 

October 0.0092 0.0170 0.0078 
November 0.0099 0.0191 0.0092 

 
5. Conclusion 
In the current study, in order to investigate 
the surface geostrophic current, SSH data of 
both altimetry satellites of Saral and Jason-2 
as well as geoid data of EGM08 model were 
used. To examine Ekman surface currents, 
surface wind data from the ASCAT satellites 
were used. For both currents, data were 
extracted in forms of monthly data, for 2014. 
The studied area was the region of the 
Persian Gulf and the Oman Sea. In order to 
calculate surface geostrophic currents, the 
motion of was used considering changes of 
the Coriolis index with latitude and the 
pressure gradient. Additionally, the 
approximation of a beta plane, as well as 
hydrostatic and stable aspects of the current 
were also used. In these equations, frictional 
terms are not taken into account. These 
equations are known as geostrophic 
equations obtained by the balance between 
the Coriolis force and the friction force.  
In the surface layer of the Persian Gulf and 
the Oman Sea, eddies are formed indicating 
the compatible clockwise or anti-clockwise 
circulation of water evidently. In inner parts 
of the Oman Sea, especially the region of 
Jusk and Oman, a complicated current with 
two opposed circulations exists. In regions 
between these two cycles which are along the 
coast of Iran, upwelling currents occur. The 
dominant direction in geostrophic currents is 
toward the southern coastal region of the 
Persian Gulf, which is along the direction of 
the main current of the Persian Gulf. Hence, 
geostrophic currents can play a determining 

role as the mains component of the Persian 
Gulf. The average values of geostrophic 
currents reach maximum value in December, 
while its nadir is in February. 
For calculating the Ekman current, an 
equation was used by considering changes of 
the Coriolis index with the latitude and 
friction effects assuming that the currents are 
steady. For solving these equations, the 
Ekman theory was used. These equations are 
known as Ekman equations, which are 
attained from the equilibrium between the 
Coriolis force and the friction force. Based 
on the Ekman theory, surface currents due to 
the wind, deviate 45° along the right and the 
left direction of the wind, in the northern and 
southern hemispheres respectively. In other 
words, when the westerly wind blows, the 
wind direction is toward the sea and 
intensifies the formation of upwelling 
currents, and when the easterly wind blows, 
the wind direction is toward the coast and it 
culminates in the creation of down welling 
currents.  
In the northern regions of the Persian Gulf 
and northwestern regions of the Oman Sea, 
the Ekman current leads to the creation of 
upwelling making cold waters of the lower 
layer move to the surface of the sea. The 
result of this phenomenon is change of water 
surface temperature. Hence the risen water 
enriched with nutritious materials and also 
benefits from a lower temperature. Therefore, 
the food pyramid is reinforced and the 
population of aquatic animals noticeably 
increases. Average values of Ekman currents 
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are maximum and minimum in June and 
October respectively. Results obtained from 
altimetry satellite data and satellites surface 
wind data are used in the calculation of 
geostrophic and Ekman surface currents 
respectively with a satisfactory compatibility 
with calculated data by AVISO and NOAA. 
The different values for both currents values 
were obtained as 1 cm/s for 2014, which 
confirms the accuracy and correctness of 
obtained currents. Considering Ekman and 
geostrophic currents in intended time periods, 
the dynamics of sea surface currents can be 
realized and then be analyzed. 
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