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The fixed-point method is a numerical 
method that works by iteration (Heiskanen 
and Moritz, 1967). However, in the Closed-
form method, the equations of the Fixed-
point method are represented as third or 
fourth degree equations, and by solving these 
equations, geodetic latitude is calculated 
(Featherstone and Claessens, 2008; Vaniček 
and Krakiwsky, 1986; Vermeille, 2002, 
2004; Vermeille, 2011). 
In a vector method, the Cartesian coordinates 
are projected onto the ellipsoid along  
the normal vector. Then, the geodetic latitude 
and height are easily calculated from  
the transformed Cartesian coordinates 
(Feltens, 2008; Ligas and Banasik, 2011).  
In a study by Zhang et al. (2005), a  
new solution is introduced in which the 
relation between a point inside/outside the 
ellipsoid with its conjugated on the ellipsoid 
(along the normal vector) is established by a 
quadratic equation of the Lagrange 
parameter. To solve the quadratic equation of 
the Lagrange parameter, an algebraic 
algorithm (Zhang et al., 2005), a fast method 
(Shu and Li, 2010) and a numerical method 
(Turner, 2009) have been developed. This 
problem can also be solved by using 
differential search algorithm (Civicioglu, 
2012). 
Currently, a huge number of equipment  
use the satellite positioning systems. Among 
these equipment, most of them use low-cost 
receivers (such as mobile phones, unmanned 
vehicles, and cars). Hence, low-cost  
GPS receivers require fast and simple 
mathematical models due to their limitation 
in computational resources. Thus, the  
speed of convergence to the solution in 
transforming Cartesian geocentric 
coordinates to curvilinear geodetic 
coordinates on biaxial ellipsoid is always  
one of the most important criteria in 
developing and introducing various methods. 
Fukushima (2006) by solving the equation 
introduced in (Bowring, 1976), shows that 
the speed of convergence of his method is 
faster than the previous works such as: 
Borkowski, 1989; Fukushima, 1999; 
Heiskanen and Moritz, 1967; Jones, 2002; 
Laskowski, 1991; Lin and Wang, 1995; 
Pollard, 2002; Vermeille, 2002; however, the  
 
 

disadvantage of this method is the 
singularities at the poles. 
The geodetic coordinate transformation was 
found to be promising in earlier approaches 
but has not yet been sufficiently examined 
and still holds potential for further 
improvements. In this research, a new initial 
value calculation paradigm is introduced that 
could transform Cartesian geocentric 
coordinates (X, Y, Z) to geodetic coordinates 
(φ, λ, h) on biaxial ellipsoid with no 
singularities at the poles and without 
iteration. In the following, the detail of 
proposed method is explained. Then, in the 
next section, the method is numerically 
evaluated and the paper ends with 
conclusion. 
 
2. Methods 
This paper proposes a new paradigm to 
calculate initial values for two state-of-the-art 
methods. Hence, at first, the geodetic height 
and tangent of the parametric latitude 
(Section 2.1 Equation (13)) are calculated 
approximately. Then, the geodetic height and 
geodetic latitude are calculated by modified 
fixed point and Fukushima’s methods. 
Besides, it is assumed that the biaxial 
ellipsoid is a geocentric ellipsoid. 
 
2-1. Proposed initial value computation 
paradigm 
In this section, the initial value computation 
parading is proposed. Hence, the initial 
values of the geodetic height and the tangent 
of the parametric latitude T are calculated. 
For this purpose, a new geocentric ellipsoid 
with the same eccentricity is scaled to 
intersect the station point.  According to 
Figure 2, the parameters of the scaled 
ellipsoid are defined as follows: 
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3. Numerical results 
This section presents a description of data 
and the results of numerical assessment and 
comparison of the modified methods. The 
World Geodetic System 1984 (WGS84) is 
used as the reference system. The parameters 
of this biaxial ellipsoid are: 
a = 6378137.0 m 
e = 0.081819191310869 
The indices and factors that lead to the 
priority of one method to another have no 
singularities at the poles speed of 
convergence and low error in calculations. 
In order to compare the methods, among 
available methods, the methods of 
Fukushima (2006), Vermeille (2011), and 
Zhang et al. (2005) are selected. All 
programs and tests have been coded in 
MATLAB, on Z500 Lenovo notebook with 
five-core 2.6 GHz processor. In Tables 1-3, 
dh and ݀߮ are geodetic height error and 
geodetic latitude error, according to meter 
and radian, respectively. 
In this section, at first, some points  
with known geodetic coordinates are 
considered, and then these points are 
converted to Cartesian coordinates using 
Equation (1). To numerically evaluate the 
available methods, the Cartesian coordinates 
of these points are converted to geodetic 
coordinates, then the converted geodetic 
coordinates are compared with the original 
geodetic coordinates. 
In the first scenario, the error rate and the 

speed of convergence are evaluated. 20,000 
points in the height range of -10 to 30,000 
km and in the geodetic latitude range of -90 
to +90 degrees and the longitude geodetic of 
45 degrees, with respect to elliptical GRS80, 
are randomly selected. The performance 
(speed of convergence and the maximum 
error of the geodetic height and latitude 
calculation) of the modified fixed point and 
Fukushima’s methods, Zhang et al., and 
Vermeille and original Fukushima’s methods 
is presented in Table 1. In this evaluation, 
processing times are normalized with respect 
to the original Fukushima’s method, the unit 
of the geodetic latitude and height are radian 
and meter respectively. In this scenario, all 
methods implemented without any iteration. 
As presented in Table 1, the accuracy of 
original Fukushima’s method is low in the 
case of non-iterative implementation. 
Although the numerical results of this 
evaluation demonstrate the universality of 
modified methods, however, to examine all 
potential of the proposed initial values, 
another numerical assessment has been 
considered on a real dataset. To this end, the 
transformation between geodetic and 
Cartesian coordinates between the positions 
of GRACE satellite around its orbit have 
been evaluated. According to scenario 1, 
17226 positions in the height of 461 km 
around the whole earth are considered. Table 
1 also presents the speed of convergence and 
geodetic height and latitude errors for 
GRACE satellite tracing. These results also 
demonstrate the advantage of the proposed 
initial value computation paradigm. 

 
Table 1. Comparison of the methods with respect to the time consuming and achieved precision for 20,000 points in the 

height range of -10 to 30,000 km and in the geodetic latitude range of -90 to +90 degrees and 17226 positions 
of GRACE satellite. 

 

Real satellite tracing 20000 random points method 
Normalized 

Time  
 Normalized (࢓) ࢞ࢇ࢓ࢎࢊ (ࢊࢇ࢘) ࢞ࢇ࢓࣐ࢊ

Time  
 (࢓) ࢞ࢇ࢓ࢎࢊ (ࢊࢇ࢘) ࢞ࢇ࢓࣐ࢊ

1.20 5 × 10ିଵ଺ 5 × 10ିଽ 1.17 5 × 10ିଵ଺1.1 × 10ି଼ Vermeille (2011)  
1.20  5 × 10ିଵ଺ 5 × 10ିଽ1.13 5 × 10ିଵ଺1.1 × 10ି଼ Zhang et al. (2005)  
0.91 5 × 10ିଵ଺ 4 × 10ିଽ 0.9 1 × 10ିଵସ1.5 × 10ି଼ Modified fixed point  

0.98 5 × 10ିଵ଺ 4 × 10ିଽ 0.93 5 × 10ିଵ଺ 1.1 × 10ି଼ 
Modified Fukushima’s 

method (2006) 

1 8 × 10ିଵସ 3.6 × 10ିଽ 1 1 × 10ିଵଵ 1.5 × 10ି଼ 
Original Fukushima’s 

method (2006) 
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In the second scenario, the singularity and 
number of iteration for points located in the 
geodetic latitude 0, 45 and 90 with the height 
of 10, 1000, 30,000 and 1,000,000 km are 
presented in Table 2. Considering the height 
of a million kilometers (30 times than height 
of satellites GPS) is just to check universality 
of the modified methods. 
As mentioned earlier, the aim of this paper  
is to introduce a new initial values paradigm 
and subsequently a fast way with no 
singularities at the poles, to convert 
geocentric coordinates to geodetic 
coordinates. The results show that  
the modified methods could successfully 
achieve what is desired. According to Table 
1, it was observed that the speed of 
convergence to the modified methods are 
faster than Fukushima, Zhang et al., and 
Vermeille’s methods. 
As presented in Table 1, the computational 
error of Vermeille and Zhang et al. methods 
are less than of the modified fixed point 
method. However, this amount of error is 
negligible due to the effect of these errors 
that is less than 0.001 mm in horizontal. 
While in these circumstances, original 
Fukushima’s method (in the non-iteration 

state) has the amount of error less than 1 mm, 
and in cases where higher accuracy is 
required, it must be solved with repetition. 
One factor that leads to the priority of one 
method to another is the universality of that 
method. Hence, to check no singularities and 
the number of iteration, the modified fixed 
point method is compared with original 
Fukushima’s method (Fukushima, 2006). 
As presented in Tables 1 and 2, the modified 
methods calculate the geodetic height and 
latitude with maximum error of 81.5 10  
meters and 141 10  radians (error lower than 
0.001 millimeter in horizontal) respectively, 
which is more accurate than original 
Fukushima’s method. In addition, unlike 
Fukushima’s method, the modified methods 
do not have singularities at the poles and are 
also considered as universal methods. 
Besides, the results of Table 2 showed that 
for points with a height of one million 
kilometers (30 times than height of satellites 
GPS), the modified methods are able to solve 
this problem without iteration and with the 
computational error less than 1 mm. While 
for points with this amount of height, original 
Fukushima’s method needs repetition. 

 
Table 2. Comparison of the modified fixed point method with original Fukushima’s method in singularities and number 

of iteration. 
 

Number 

of iteration 
  dh (m) (ࢊࢇ࢘)࣐ࢊ

position 

(φ, λ, h)  Original 
Fukushima 

(2006)  

Modified 
fixed point 

method 

Original 
Fukushima 

(2006) 

Modified 
fixed point 

method 

Original 
Fukushima 

(2006)  

Modified 
fixed point 

method  
0  0  1 × 10ିଵ଺ 1 × 10ିଵ଺ 2 × 10ିଽ 9 × 10ିଵ଴ (

గସ, 
గସ,10)  

0 0  3 × 10ିଵଷ 9 × 10ିଵ଺ 9 × 10ିଵ଴ 9 × 10ିଵ଴ (
గସ, 

గସ,1000)  

0  0  1 × 10ିଵଵ 1 × 10ିଵସ 4 × 10ିଽ 4 × 10ିଽ (	గସ, 
గସ, 30000)  

1  0 0  1 × 10ିଵହ 0  0  (	గସ, 
గସ, 1000000)  

0  0  0  0  3 × 10ିଵ଴ 3 × 10ିଵ଴ (0, 
గସ,10)  

0  0  0  0  1 × 10ିଽ 1 × 10ିଽ (0, 
గସ,1000)  

0  0  0  0  0  0  (0, 
గସ, 30000)  

0  0 0  0  0  0  (0, 
గସ, 1000000)  

0  0  singular  0  singular  6 × 10ିଵଵ (
గଶ, 

గସ,10)  
0 0  singular  0  singular  5 × 10ିଵ଴ (

గଶ, 
గସ,1000)  

0  0  singular  0  singular  0  (
గଶ, 

గସ, 30000)  

0  0 singular  0  singular  0  (
గଶ, 

గସ, 1000000)  
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In another test for checking the number of 
iteration and universality of the modified 
methods, in this study, the most well-known 
global biaxial ellipsoids and a synthetic 
ellipsoid with different eccentricity are 
evaluated. In this evaluation, considering 
various ellipsoids, for points set in Table 2, 
the maximum geodetic latitude and height 
error of the modified methods are presented 
in Table 3. In this table, all results achieved 
without iteration. 
Due to the eccentricity of less than 0.1  
for known defined ellipsoids, the results  
in Table 3 show that the modified  
methods calculate the geodetic height  
and latitude without iteration, thus  
the modified methods are considered as  
the non-iterative method. Hence, the step- 
by-step of the modified methods are 
presented in Appendix 1and 2 without 
iteration. 
 

5. Conclusion 
The aim of this paper is to modify two state-
of-the-art methods with high speed of 
convergence and no singularities at the poles, 
to convert Cartesian coordinates to geodetic 
coordinates. The results show that the speed 
of convergence to the modified methods are 
faster than original Fukushima (2006), Zhang 
et al. and Vermeille’s methods and the error 
of geodetic height and latitude calculation are 
also less than mentioned methods. In 
addition, unlike Fukushima’s method in the 
modified methods, the points located at poles 
do not have singularities. 
Besides, according to the results, for 
ellipsoids with eccentricity less than 0.3, the 
calculations show that the modified methods 
(in the height range of -10 to 1 million 
kilometers away from the elliptical surface) 
can convert Cartesian coordinates to geodetic 
coordinates without iteration. 

 
Table 3. Evaluation of the modified fixed point and modified Fukushima’s methods for a number of well-known global 

ellipsoids. 
 

Modified fixed point method 
Modified Fukushima’s 

method Eccentricity a  Ellipsoid  ࢞ࢇ࢓࣐ࢊ (݉) ݀߮௠௔௫	ℎ௠௔௫݀ (ࢊࢇ࢘) ℎ௠௔௫݀ (݀ܽݎ) (݉) 1 × 10ିଵସ1.5 × 10ି଼ 6 × 10ିଵ଺1.1 × 10ି଼0.08167337  6377563.396  Airy 1830  1 × 10ିଵସ1.5 × 10ି଼ 6 × 10ିଵ଺1.1 × 10ି଼0.08169683  6377397.155 Bessel 1841 1 × 10ିଵସ1.9 × 10ି଼ 6 × 10ିଵ଺1.1 × 10ି଼0.08248321  6378249.145 Clarke 1880 1 × 10ିଵସ 1.5 × 10ି଼ 6 × 10ିଵ଺1.1 × 10ି଼0.08199189  6378388.000  ED50  1 × 10ିଵସ1.9 × 10ି଼ 6 × 10ିଵ଺1.1 × 10ି଼0.08182018  6378160.000  SAD69  1 × 10ିଵସ1.5 × 10ି଼ 6 × 10ିଵ଺1.1 × 10ି଼0.08181919  6378137.000  GRS80  1 × 10ିଵସ1.5 × 10ି଼ 6 × 10ିଵ଺1.1 × 10ି଼0.08181919  6378137.000  WGS84  5 × 10ିଵ଺ 2.2 × 10ି଼ 5 × 10ିଵ଺2.2 × 10ି଼0.05 6378137.000 

Sy
nt

he
ti

c 
el

lip
so

id
 

7 × 10ିଵ଺ 1.8 × 10ି଼ 6 × 10ିଵ଺1.8 × 10ି଼0.06 6378137.000 2 × 10ିଵହ 2.2 × 10ି଼ 6 × 10ିଵ଺1.8 × 10ି଼0.07 6378137.000 8 × 10ିଵହ 1.8 × 10ି଼ 6 × 10ିଵ଺1.8 × 10ି଼0.08 6378137.000 3 × 10ିଵସ 1.8 × 10ି଼ 5 × 10ିଵ଺1.8 × 10ି଼0.09 6378137.000 7 × 10ିଵସ 1.8 × 10ି଼ 6 × 10ିଵ଺1.4 × 10ି଼0.1 6378137.000 4.4 × 10ିଵଶ 1.3 × 10ି଻ 6 × 10ିଵ଺1.3×10−7 0.15 6378137.000 8 × 10ିଵଵ 4.3 × 10ି଺ 6 × 10ିଵ଺4.3×10−6 0.2 6378137.000 5 × 10ିଽ 6.5 × 10ିସ 5 × 10ିଵ଺6.5 × 10ିସ0.3 6378137.000 
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Appendix 1: The step-by-step of the modified fixed point method 

The algorithm of the modified fixed point method to convert Cartesian geocentric coordinates to 

geodetic coordinates 

(For ellipsoids with eccentricities less than 0.1). 

 

1. Calculate PG from Equation (5) 

2 2
G G GP X Y   

2. Calculate k from Equation (9) 

2 2

2 2
G GP Z

k
a b

   

3. Calculate ܂૙	from Equation (18) 

   
   

2 2 2 2

0 2 2 2 2 6

2

1

1 10

1

c G G G

G G G

c

e k a k P Z Z
T

k b k P Z P

e e



  


   

 

 

4. Calculate C from Equation (20) 

2 2
0

1

c

C
e T




 

5. Calculate h from Equation (19) 

 2
0 01c G Gh e P Z T b T C     

6. Calculate N from Equation (25) 

 22 2
G c

C

a e P e hC
N

e

 
  

7. Calculate φ from Equation (26) 

 
 

1

2 6
tan

10
G

C G

N h Z

Ne h P
 






 
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Appendix 2: The step-by-step of the modified Fukushima’s (2006) method 

The algorithm of modified Fukushima’s method (2006) to convert Cartesian geocentric coordinates 

to geodetic coordinates 

(For ellipsoids with eccentricities less than 0.1). 

1. Calculate PG from Equation (5) 

2 2
G G GP X Y   

2. Calculate k from Equation (9) 

2 2

2 2
G GP Z

k
a b

   

3. Calculate the following parameters 

2, ,G cG
Z eP

P Z E e
a a

    

4. Calculate ܂૙	from the following equation 

 

   
   

2 2 2 2

0 2 2 2 2 6

2

1

1 10

1

c G G G

G G G

c

e k a k P Z Z
T

k b k P Z P

e e



  


   

 

 

5. Calculate the following parameters 

2
0

3
1

0 0

1D T

g PD E

g DPT DZ ET

 

 
  

 

6. Calculate T from Equation (28) 

2
1

0 2
1 0

2

2 3

D g g
T T

g ET g
 


 

7. Calculate h from Equation (31) 

0

2 2
0

c G G

c

e P Z T Db
h

e T

 



 

8. Calculate φ from Equation (30) 

1( ) tan ( )ZG
c

T
sign

e
   

 


