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Abstract

Transforming geocentric Cartesian coordinates (X, Y, Z) to geodetic curvilinear coordinates (¢, A,
h) on a biaxial ellipsoid is one of the problems used in satellite positioning, coordinates conversion
between reference systems, astronomy and geodetic calculations. For this purpose, various
methods including Closed-form, Vector method and Fixed-point method have been developed. In
this paper, a new paradigm for calculation of initial values is presented. According to the new
initial values, two state of the art iterative methods are modified to calculate the geodetic height
and the geodetic latitude accurately and without iteration. The results show that for those points
with height values between -10 to 1,000,000 km (30-fold more than the altitude of GPS satellites),
the maximum error of the calculated height and geodetic latitude is less than 1.5x10®* m and 1x10°
"% rad (error lower than 0.001 mm in horizontal), respectively.

Keywords: Geodetic coordinate transformation, Cartesian geocentric coordinate, Curvilinear

geodetic coordinate.

1. Introduction

Transforming Cartesian geocentric
coordinates (X, Y, Z) to curvilinear geodetic
coordinates (@, A, h) on biaxial ellipsoid
is one of the conversions used in several
applications such as navigation and satellite
positioning, coordinates conversion from
one datum to another, satellite orbit
determination and positioning astronomy.
According to Figure 1 and Equation (1),
the main purpose is the calculation of
geodetic coordinates (@, A, h) from Cartesian
geocentric coordinates (X, Y, Z). In this case,
geodetic longitude could be easily calculated
from Equation (4) (Vani¢ek and Krakiwsky,
1986). However, for calculating geodetic
latitude and geodetic height, a mathematical
problem occurs. For solving this problem,
various methods including Closed-form,
Vector method and Fixed-point have been
developed (Kumi-Boateng and Ziggah,
2016). Current Cartesian to geodetic
coordinate  transformation methods in
the literature focus on the convergence speed,
number of iteration, accuracy and innovation
in their methods. These methods
are summarized in Featherstone and
Claessens (2008).
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Figure 1. The position of a point with respect to biaxial
ellipsoid.

*Corresponding author:

farzaneh@ut.ac.ir



20 Journal of the Earth and Space Physics, Vol. 44, No. 4, Winter 2019

The fixed-point method is a numerical
method that works by iteration (Heiskanen
and Moritz, 1967). However, in the Closed-
form method, the equations of the Fixed-
point method are represented as third or
fourth degree equations, and by solving these
equations, geodetic latitude is calculated
(Featherstone and Claessens, 2008; Vanicek
and Krakiwsky, 1986; Vermeille, 2002,
2004; Vermeille, 2011).

In a vector method, the Cartesian coordinates
are projected onto the ellipsoid along
the normal vector. Then, the geodetic latitude
and height are easily calculated from
the transformed Cartesian coordinates
(Feltens, 2008; Ligas and Banasik, 2011).
In a study by Zhang et al. (2005), a
new solution is introduced in which the
relation between a point inside/outside the
ellipsoid with its conjugated on the ellipsoid
(along the normal vector) is established by a
quadratic equation of the Lagrange
parameter. To solve the quadratic equation of
the Lagrange parameter, an algebraic
algorithm (Zhang et al., 2005), a fast method
(Shu and Li, 2010) and a numerical method
(Turner, 2009) have been developed. This
problem can also be solved by using
differential search algorithm (Civicioglu,
2012).

Currently, a huge number of equipment
use the satellite positioning systems. Among
these equipment, most of them use low-cost
receivers (such as mobile phones, unmanned
vehicles, and cars). Hence, low-cost
GPS receivers require fast and simple
mathematical models due to their limitation
in computational resources. Thus, the
speed of convergence to the solution in
transforming Cartesian geocentric
coordinates  to curvilinear  geodetic
coordinates on biaxial ellipsoid is always
one of the most important criteria in
developing and introducing various methods.
Fukushima (2006) by solving the equation
introduced in (Bowring, 1976), shows that
the speed of convergence of his method is
faster than the previous works such as:
Borkowski, 1989;  Fukushima, 1999;
Heiskanen and Moritz, 1967; Jones, 2002;
Laskowski, 1991; Lin and Wang, 1995;
Pollard, 2002; Vermeille, 2002; however, the

disadvantage of this method is the
singularities at the poles.

The geodetic coordinate transformation was
found to be promising in earlier approaches
but has not yet been sufficiently examined
and still holds potential for further
improvements. In this research, a new initial
value calculation paradigm is introduced that
could transform  Cartesian  geocentric
coordinates (X, Y, Z) to geodetic coordinates
(p, A, h) on biaxial ellipsoid with no
singularities at the poles and without
iteration. In the following, the detail of
proposed method is explained. Then, in the
next section, the method is numerically
evaluated and the paper ends with
conclusion.

2. Methods

This paper proposes a new paradigm to
calculate initial values for two state-of-the-art
methods. Hence, at first, the geodetic height
and tangent of the parametric latitude
(Section 2.1 Equation (13)) are calculated
approximately. Then, the geodetic height and
geodetic latitude are calculated by modified
fixed point and Fukushima’s methods.
Besides, it is assumed that the biaxial
ellipsoid is a geocentric ellipsoid.

2-1. Proposed initial value computation
paradigm

In this section, the initial value computation
parading is proposed. Hence, the initial
values of the geodetic height and the tangent
of the parametric latitude T are calculated.
For this purpose, a new geocentric ellipsoid
with the same eccentricity is scaled to
intersect the station point. According to
Figure 2, the parameters of the scaled
ellipsoid are defined as follows:
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Figure 2. Position of the station point with respect to
meridian plane; red: scaled ellipsoid and
black: Reference ellipsoid.

In order to calculate the initial value of
geodetic height, at first, the following
approximations are considered.
P Z

P=-%,Z.=—¢%

T kTR K
According to Figure 2 and Equation (10), the
initial value of height is calculated by
Equation (12).

I

(10)

h=\(Ps—P.) +(Zo-Z,)* =

(1)
h= \/(PG—%)z +(ZG—Z—kG)2

mzw—lzl)wlpgzg (12)

The tangent of the parametric latitude T is a
variable that was defined by (Bowring, 1976)
as:

T=e tang

(13)

According to the proposed method by
Heiskanen and Moritz  (1967), the
relationship between the geodetic latitude
and the tangent of the parametric latitude T
can be expressed as follow:
(N+h)Z,
T=¢e > (14)
(N(1-€e)+h)R;

Hence, the tangent of the parametric latitude
T is initially calculated by considering initial
values for h and N. According to Equation

(12), the initial value of h is calculated easily.
However, the initial value of N is
approximately calculated using a new
relationship. According to Figure 2, the
initial value of height could also be
calculated by Equation (16).
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Therefore, from Equation (2), the initial
value of N is equal to:

_(k=Da’
f =
hy
By substituting Egs. (16) and (17) in
Equation (14), the initial tangent of the

parametric latitude T could be calculated as
follows:

e (K&’ +(k-1)(R’ +247)) Z
o (kzb2 +(k—1)(PG2 +ZGZ))PG +¢&

N a7

(18)

In order to avoid the singularities at the
poles, € is added to Equation (18), which has
a value of 107%. Compared to ¢, the large

amount of (k2b2+(k—1)(PGZ+ZGZ))PG has

no significant effect on the final results. For
example, around the North Pole (0.1
millimeter), if Pg, Zg, and K were 1 x 107*
m, 64x10° m, and 1 respectively,

(kZb2 +(k_1)(PG2 + zez)) P, will be 4 x 10°
that compared with 107 is neglected.

2-2. Modified fixed point method

In this section, the geodetic latitude and
height are calculated using modified fixed
point method. The geodetic height is
calculated from the proposed method by
Fukushima (2006).

h:(eCPG +ZGT—b\/1+T2)C (19)
where

Co (20)

Jel+T?
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By replacing the initial tangent of the
parametric latitude T, in Equations (19) and
(20), the geodetic height is calculated
accurately.

Moreover, to calculate the geodetic latitude,
the equations of the fixed-point method
(Equation (14)) which was presented by
Heiskanen and Moritz (1967) are used.
Hence, the radius of prime vertical (N) must
be calculated.
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Figure 3. The geometric relationships between geodetic
latitude, height and radius of prime vertical.

According to triangle (2) in Figure 3, the
following equation is hold:
N'(1-€) =z +P (1-€) =

2
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In addition, considering the definition of an
ellipsoid:
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TS el eRi=a (@)

By substituting Equation (22) in (21), N is
obtained as follows:

a—ep?
N= [———F 23
N 1) (23)

On the other hand, according to triangle (1)
in Figure 3, Pg is equal to:

h
P:P——:>

E G
\J1+tan® @
hvl-¢

P=P-——= (24)

By substituting T from Equation (18), h from
Equation (19) and Pg from Equation (24) in
Equation (23), the initial value of N is
obtained as follows:

N \/az ~& (P, —ehC)
&

After obtaining N from Equation (25) and h
from Equation (19) and substituting them in
Equation (14), the geodetic latitude is
calculated as follows:

(N+h)Z,
(Necz+h)P6+g

(25)

-1

@ = tan (26)

In order to avoid singularities at the poles, ¢
is also added to Equation (26), which has a
value of 107°.

2-3. Modified Fukushima’s method

The geodetic latitude and height could also
be calculated using modified Fukushima’s
method. The Fukushima’s method solves the
tangent of the parametric latitude by Halley’s
method. The tangent of the parametric
latitude is expressed as follows:

ET
gT)=PT-Z-
V1+T?
P Z.|e
P=—G,Z:| o ¢t E=¢€ 27
a a

The Halley’s method could be simplified as
follows:

2
To7,-—2099 (28)
29, -3ET g
where,
. ec(kzaz +(k=1)(R +zG2))|zG|
‘ _(k2b2+(k—1)(PGZ+ZGZ))PG+g
9, =PD'-E
g =DPT - DZ - ET,

(29)

D=1+T}

Finally, the geodetic latitude and height are
calculated as follows:

@ =90n(zg) arctan(g) (30)

C
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3. Numerical results

This section presents a description of data
and the results of numerical assessment and
comparison of the modified methods. The
World Geodetic System 1984 (WGS84) is
used as the reference system. The parameters
of this biaxial ellipsoid are:

a=6378137.0 m

¢ =0.081819191310869

The indices and factors that lead to the
priority of one method to another have no
singularities at the poles speed of
convergence and low error in calculations.

In order to compare the methods, among

€2))

available methods, the methods of
Fukushima (2006), Vermeille (2011), and
Zhang et al. (2005) are selected. All

programs and tests have been coded in
MATLAB, on Z500 Lenovo notebook with
five-core 2.6 GHz processor. In Tables 1-3,
dh and d¢ are geodetic height error and
geodetic latitude error, according to meter
and radian, respectively.

In this section, at first, some points
with known geodetic coordinates are
considered, and then these points are

converted to Cartesian coordinates using
Equation (1). To numerically evaluate the
available methods, the Cartesian coordinates
of these points are converted to geodetic
coordinates, then the converted geodetic
coordinates are compared with the original
geodetic coordinates.

In the first scenario, the error rate and the

23

speed of convergence are evaluated. 20,000
points in the height range of -10 to 30,000
km and in the geodetic latitude range of -90
to +90 degrees and the longitude geodetic of
45 degrees, with respect to elliptical GRS80,
are randomly selected. The performance
(speed of convergence and the maximum
error of the geodetic height and latitude
calculation) of the modified fixed point and
Fukushima’s methods, Zhang et al., and
Vermeille and original Fukushima’s methods
is presented in Table 1. In this evaluation,
processing times are normalized with respect
to the original Fukushima’s method, the unit
of the geodetic latitude and height are radian
and meter respectively. In this scenario, all
methods implemented without any iteration.
As presented in Table 1, the accuracy of
original Fukushima’s method is low in the
case of non-iterative implementation.
Although the numerical results of this
evaluation demonstrate the universality of
modified methods, however, to examine all
potential of the proposed initial values,
another numerical assessment has been
considered on a real dataset. To this end, the
transformation  between geodetic  and
Cartesian coordinates between the positions
of GRACE satellite around its orbit have
been evaluated. According to scenario 1,
17226 positions in the height of 461 km
around the whole earth are considered. Table
1 also presents the speed of convergence and
geodetic height and latitude errors for
GRACE satellite tracing. These results also
demonstrate the advantage of the proposed
initial value computation paradigm.

Table 1. Comparison of the methods with respect to the time consuming and achieved precision for 20,000 points in the
height range of -10 to 30,000 km and in the geodetic latitude range of -90 to +90 degrees and 17226 positions

of GRACE satellite.

| method | 20000 random points Real satellite tracing
dh,qy dQmax Normalized dh,ay AdQmax Normalized
(m) (rad) Time (m) (rad) Time
| Vermeille (2011) | 1.1x 1078 5x 10716 1.17 5x107° 5x 10716 1.20
[ Zhangetal. 2005) ][ 1.1x 1078 || 5x 107 1.13 5x107° ||| 5x 1071 1.20
| Modified fixed point | | 1.5 x 1078 | | 1 x 1071 0.9 4x107° ||| 5x 1076 0.91
Modified Fukushima’s 8 “16 9 16
mothod 006y | [11x 1078 || 5107t [ 093 || 4x10 [[sx10-* ][ 098
Original Fukushima’s _8 11 —9 —14
method 2006y | | 15 107° | [ 1x 107 || ! L 36x10 Jl8x 10 ][ 1
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In the second scenario, the singularity and
number of iteration for points located in the
geodetic latitude 0, 45 and 90 with the height
of 10, 1000, 30,000 and 1,000,000 km are
presented in Table 2. Considering the height
of a million kilometers (30 times than height
of satellites GPS) is just to check universality
of the modified methods.

As mentioned earlier, the aim of this paper
is to introduce a new initial values paradigm
and subsequently a fast way with no

singularities at the poles, to convert
geocentric ~ coordinates  to  geodetic
coordinates. = The results show that

the modified methods could successfully
achieve what is desired. According to Table
1, it was observed that the speed of
convergence to the modified methods are
faster than Fukushima, Zhang et al., and
Vermeille’s methods.

As presented in Table 1, the computational
error of Vermeille and Zhang et al. methods
are less than of the modified fixed point
method. However, this amount of error is
negligible due to the effect of these errors
that is less than 0.001 mm in horizontal.
While in these -circumstances, original
Fukushima’s method (in the non-iteration

Journal of the Earth and Space Physics, Vol. 44, No. 4, Winter 2019

state) has the amount of error less than 1 mm,
and in cases where higher accuracy is
required, it must be solved with repetition.
One factor that leads to the priority of one
method to another is the universality of that
method. Hence, to check no singularities and
the number of iteration, the modified fixed
point method is compared with original
Fukushima’s method (Fukushima, 2006).

As presented in Tables 1 and 2, the modified
methods calculate the geodetic height and
latitude with maximum error of 1.5x10™*
meters and 1x107" radians (error lower than
0.001 millimeter in horizontal) respectively,
which is more accurate than original
Fukushima’s method. In addition, unlike
Fukushima’s method, the modified methods
do not have singularities at the poles and are
also considered as universal methods.
Besides, the results of Table 2 showed that
for points with a height of one million
kilometers (30 times than height of satellites
GPS), the modified methods are able to solve
this problem without iteration and with the
computational error less than 1 mm. While
for points with this amount of height, original
Fukushima’s method needs repetition.

Table 2. Comparison of the modified fixed point method with original Fukushima’s method in singularities and number

of iteration.
T Y S — T S— —
position
(@, 2 h) Modified Original Modified Original Modified Original
= fixed point Fukushima fixed point Fukushima fixed point Fukushima

method (20006) method (2006) method (2006)
G, 5.10) [ 9x107 || 2x10° || 1x10% |[ 1x10' |[ o || 0 |
210000 || 9x107 ][ 9x107 || 9x107% |[ 3x107® |[ 0o ] 0 |
(2300000 || 4x107° |[ 4x10° |[ 1x107™ || 1x10™ [ o ]| 0 |
oo [0 J[ v o] o [ o J[ 1]
(0.%.10) [ 3x107 |[3x107 |[[ o | o ]| 0 |
0,%10000 || 1x10° || 1x107° |] 0 || 0 || 0 || 0 |
ofsww | o L v I o JL » [ o J[ o+ |
(0,%,1000000) | | 0 [l o | 0 | | 0 || 0 || 0 |
(%, %,10) | 6x 10711 | | singular | I 0 I | singular | | 0 | | 0 |
(g, %1000) | 5x 10710 | | singular | | 0 | | singular | | 0 | | 0 |
(g, %, 30000) | 0 | | singular | | 0 | | singular | | 0 | | 0 |
(3. % 1000000) || 0 | [ singular || 0 || singular || 0 || 0 |
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In another test for checking the number of
iteration and universality of the modified
methods, in this study, the most well-known
global biaxial ellipsoids and a synthetic
ellipsoid with different eccentricity are
evaluated. In this evaluation, considering
various ellipsoids, for points set in Table 2,
the maximum geodetic latitude and height
error of the modified methods are presented
in Table 3. In this table, all results achieved
without iteration.

Due to the eccentricity of less than 0.1
for known defined ellipsoids, the results

in Table 3 show that the modified
methods calculate the geodetic height
and latitude without iteration, thus

the modified methods are considered as
the non-iterative method. Hence, the step-
by-step of the modified methods are
presented in Appendix land 2 without
iteration.

5. Conclusion

The aim of this paper is to modify two state-
of-the-art methods with high speed of
convergence and no singularities at the poles,
to convert Cartesian coordinates to geodetic
coordinates. The results show that the speed
of convergence to the modified methods are
faster than original Fukushima (2006), Zhang
et al. and Vermeille’s methods and the error
of geodetic height and latitude calculation are
also less than mentioned methods. In
addition, unlike Fukushima’s method in the
modified methods, the points located at poles
do not have singularities.

Besides, according to the results, for
ellipsoids with eccentricity less than 0.3, the
calculations show that the modified methods
(in the height range of -10 to 1 million
kilometers away from the elliptical surface)
can convert Cartesian coordinates to geodetic
coordinates without iteration.

Table 3. Evaluation of the modified fixed point and modified Fukushima’s methods for a number of well-known global

ellipsoids.
Modified Fukushima’s | Modified fixed point method |
| Ellipsoid | | a | |Eccentricity| method
hngx (M) | [d@imar (rad) | [ dhypgs () | [ d@imax (rad) |
| Airy 1830 || 6377563.396 | [ 0.08167337 || 1.1x10°® || 6x 107 || 1.5x108 || 1x10"* |
[ Bessel 1841 | [ 6377397.155 | [ 0.08169683 || 1.1x10-® || 6x 107 || 1.5x 1078 || 1x 10" |
| Clarke 1880 | [ 6378249.145 | | 0.08248321 || 1.1x 108 || 6x 1076 |[ 1.9x 108 [[ 1x107* |
| ED50 || 6378388.000 | [ 0.08199189 || 1.1x 1078 || 6x 107 || 1.5x1078 || 1x10"* |
| sAD69 | [6378160.000 | [ 0.08182018 || 1.1x 108 || 6x 1076 |[[ 1.9x10® [[ 1x107* |
| GRS80 || 6378137.000 | [ 0.08181919 || 1.1x10°® || 6x 107 || 1.5x10® || 1x107* |
| WGss4 | [6378137.000 | [ 0.08181919 || 1.1x 108 || 6x 1076 |[ 1.5x10® [[ 1x 107 |
[6378137.000 | | 005 || 22x10® || 5x1076 || 22x10°® || 5x10°% |
16378137.000 || 006 || 1.8x107® || 6x107'¢ || 1.8x107® 7 x 10716
= |6378137.000 || 007 || 1.8x10°® || 6x107%¢ || 2.2x107® 2x 10715
£ [6378137.000 || 0.08 || 18x108 || 6x107'6 |[ 1.8x10°8|] 8x 107’5
B 16378137.000 || 009 || 1.8x10°® || 5x107%¢ || 1.8x10°® || 3x 10"
5:;’ 16378137.000 | [ 01 [[14x10® || 6x107% || 18x108 ][ 7x10°™*
& 16378137.000 | | 015 || 13x10-7 || 6x 107 || 13x 1077 || 4.4x 1072
16378137.000 || 02 || 43x10-6 || 6x107%¢ || 43x10°¢ || 8x 10!
[6378137.000 || 03 || 65x10* || 5x107% |[65x10™* || 5x107°
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Appendix 1: The step-by-step of the modified fixed point method
The algorithm of the modified fixed point method to convert Cartesian geocentric coordinates to
geodetic coordinates

(For ellipsoids with eccentricities less than 0.1).

1. Calculate PG from Equation (5)

P, =X +Y’

2. Calculate k from Equation (9)

2 2
k = PL+ Ze
Va* b

3. Calculate T, from Equation (18)

e (K& +(k-1)(R’ +2")) Z
. (k2b2 +(k—1)(PG2 +ZGZ)) P, +10°

e =+l-¢€
4. Calculate C from Equation (20)
1

Jel+T)?

5. Calculate h from Equation (19)

C=

h= (eCPG +Z.T, b1+ T, )c
6. Calculate N from Equation (25)

N - \/az ~& (P, —ghC)’
e
7. Calculate ¢ from Equation (26)
(N+h)Z;
(Ne.” +h)R, +10°

-1

@ =tan
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Appendix 2: The step-by-step of the modified Fukushima’s (2006) method
The algorithm of modified Fukushima’s method (2006) to convert Cartesian geocentric coordinates
to geodetic coordinates

(For ellipsoids with eccentricities less than 0.1).

1. Calculate PG from Equation (5)

P, =X +Y,]

2. Calculate k from Equation (9)

P2 ZZ

3. Calculate the following parameters

P:i Z:|ZG|ec
a’

,E=¢

4. Calculate T, from the following equation

e (kKa +(k-1)(R +25))|Z]
(kzb2 +(k—1)(PG2 +ZG2)) P,+10°

0=

e =l-¢

C

5. Calculate the following parameters

D=41 +T02

g = PD’-E
g=DPT,-DZ-ET,

6. Calculate T from Equation (28)

2D?
T=T,-—= 9,9
29,” -3ET,g

7. Calculate h from Equation (31)
&R +|Z;|T,-Db

h=

8. Calculate ¢ from Equation (30)

rp:s'gmzenan*(g)

C



