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Abstract 
One-dimensional fast Fourier transform (1D FFT) is used to solve the ellipsoidal Stokes integral 
(Martinec and Grafarend, 1997) in an ellipsoidal cap around the computational point (near-zone 
contribution) numerically. 

For the far-zone contribution the spherical harmonic expansion can be applied. The geoidal height 
computation through direct numerical solution of the integral and 1D FFT will be compared for an area in 
Canada. The comparison shows relatively a great difference due to the application of FFT to the original 
ellipsoidal Stokes integral. 

 
Keywords: Ellipsoidal Stokes integral, 1D FFT, Geoidal height 

 
1 INTRODUCTION 
The ellipsoidal Stokes integral as the solution of 
the ellipsoidal Stokes boundary-value problem 
has been defined by Martinec and Grafarend 
(1997). The direct numerical solution of the 
integral is expressed by Ardestani and Martinec 
(2000). 

The determination of the geoid with spectral 
methods employing Stokes kernel function can 
perform with an FFT transform, due to the 
efficiency of the latter, and has been discussed by 
many authors (Sideris, 1997). 
 
2 ELLIPSOIDAL STOKES BOUNDARY-
VALUE PROBLEM 
We introduce ellipsoidal coordinates (u, β, λ) 
through the transformation relations into 
Cartesian coordinates (x, y, z) (Heiskanen and 
Moritz, 1967), 
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where β is the reduced co-latitude, λ is the 
longitude, E is the linear eccentricity 

22 baE −=  (=constant). The problem that we 
will deal with is to determine potential T(u,Ω), 
Ω=(β,λ), on and outside the reference ellipsoid of 
revolution 0bu =  so that: 
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where f(Ω) is assumed to be a known square 
integrable function, i.e., f(Ω)ε L2(Ω), (gravity 

anomalies) and c is a constant and )
u
1(O 3  

reflects the order of the error. According to 
Martinec and Grafarend (1997) the solution of the 
ellipsoidal Stokes boundary-value problem when 
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where χ is the angular distance between directions 
Ω and Ω', and S(χ) is the spherical Stokes 
function (Heiskanen and Moritz, 1967) and Ω0 is 
the full solid angle. According to Martinec and 
Grafarend (1997), )',(Sell ΩΩ is called the 
ellipsoidal Stokes function and has the same 
degree of singularity at point 0=χ  as the 
spherical Stokes function. )b( 000=α  has been 
defined by Martinec and Grafarend (1997), 
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(6) 
where 00Q  is the first degree of the second kind 
of Legendre,s function. Removing the singularity 
is a crucial point in solving the integral 
numerically. In solving integral (5) numerically 
we resolve it into the near-zone contribution and 
the far-zone contribution, 
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where ),b(N 0
0 Ωχ is the near-zone contribution 

and ),b(N 0
0 Ωχ−π  is the far-zone contribution. 

 
3 NEAR-ZONE CONTRIBUTION 
Computing the near-zone contribution of N in a 
cap )C( 0χ  around the computational point, we 
have 
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To abbreviate the near-zone integration domain 
we have used 0Cχ  which means 00 χ≤χ≤  and 

.20 π≤α≤  Removing the singularity of χ=0 
yields 
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(9) 
The direct numerical solution of this integral has 
been reported by Ardestani and Martinec (2000) 
as follows, 
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where )(Q 00 χ  is the zero-degree Molodenskij 
truncation coefficients(Molodenskij et al. 1960). 
The numerical solution of this equation is readily 
obtained by replacing the integrals by sums and 
substituting gravity anomalies instead of f (Ω) and 
f (Ω'). The analytic form of the third part of the 
right hand side is derived by Ardestani and 
Martinec (2000). A numerical evaluation of 
equation (8) for the near-zone contribution is 
given using the 1D FFT, 
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where F1 is the direct 1D FFT, 11F − is the 
inverse transform and φ, λ represent co-latitude 
and longitude. Since all quantities are real-valued, 
we can compute the Fourier transforms of the two 
real-valued arrays which are actually gravity 
anomalies simultaneously to save computer time 
(Huang et al. 2000) 
 
4 FAR-ZONE CONTRIBUTION 
Computing the geoidal heights of the far-zone 
contribution (outside the cap) considering 
equation (5), we find 
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This integral can be interpreted as a spherical 
Stokes integration extended by the term related to 

ellipsoidal contribution: )',(Se ell2
0 ΩΩ ; we now 

split this integral as follows, 
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Since the magnitude of the second part is 

small, we approximate the far-zone contribution 
by taking just the first part of the right-hand side 
of equation (13) into account. The error of this 
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approximation for the area in Canada is less than 
5cm cm$ (Ardestani and Martinec 2003). 
According to Heiskanen and Moritz (1967). 
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where ),b(N 0
0 Ωχ−π  is the geoidal height of the 

far-zone contribution, )(Q 0j χ  are the 

Molodenskij truncation coefficients  and jmf  can 
be determined by a global geopotential model 
GGM (Heiskanen and Moritz, 1967). 
 
5 NUMERICAL RESULTS 
Computing the near-zone contribution and the far-
zone contributions through equations (10) and 
(14), we determined the geoidal heights over an 
area in Canada (figure 1). Instead of f(Ω'), we 
used Helmert gravity anomalies on a (5',5') grid. 
Applying equations (11) and (14), the geoidal 
heights are computed for the same area (figure 2). 
The absolute differences between these two 
methods are presented in figure 3. As can be seen 
through the figures 1 and 2, there is a relatively 
close correlation between the figures. Figure 3 
indicates great differences (up to 9 meters) in 
geoidal heights computation. 
 
6 CONCLUSIONS 
Removing the singularity of the spherical and 
ellipsoidal Stokes functions in the near-zone 
contribution (equation 9) enables us to compute 
the geoidal heights precisely. Although the 1D 
FFT method is faster and does not need long 
computations and programming it introduces 
signficant errors in geoidal heights computations. 
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Figure 1. Geoidal heights through the direct numerical solution equations 10 and 14 (in meters). 
 

 Figure 2. Geoidal heights through 1D FFT equations 11 and 14 (in meters). 
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Figure 3. The differences between the geoidal heights computation through the direct numerical 
solution equations 10 and 14 and 1D FFT equations 11 and 14 (in meters). 

 


