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Abstract 
Direct current electrical resistivity imaging is provided by measuring the vertical and horizontal 
electrical potential variations of subsurface structures using surface and borehole records. To 
recover the resistivity tomograms from the observed data, a non-linear inverse problem is required 
to be iteratively solved. A 2.5-dimensional forward modeling based on the finite-difference 
method with rectangular meshes is also formulated. The two-dimensional reconstruction of earth 
resistivity data is implemented using a smoothness constrained inversion algorithm (i.e. Occam’s 
method), wherein a Gauss-Newton technique for updating the sensitivity function is proposed. 
After verifying the accuracy and efficiency of the forward modeling and the sensitivity function 
calculation, the inversion algorithm is tested on synthetic data from both geometrically simple and 
complicated bodies and a real data set. A stopping criterion based on the noise level, roughly 
estimated using the method of reciprocal resistance measurements, is also provided leading to 
preventing over-or under-interpreted structure during the inversion process. The numerical 
experiments reveal that the proposed inversion algorithm provides stable inversion results and an 
acceptable representation of the main features and structure of the models without producing 
spurious effects. Furthermore, to deal with the reliability of the recovered models, a model 
sensitivity analysis is implemented using the resolution density distribution. All used formulations 
and concepts are part of a Matlab source code developed during this study. 

 

Keywords: Electrical resistivity tomography, 2.5-D non-linear inversion, Resolution density. 
 

1. Introduction 
Geo-electrical approaches are intrinsically 
sensitive to discontinuities within the 
electrical characteristics of subsurface 
structures. Electrical resistivity tomography 
(ERT) is a well-established and widely used 
method to solve a variety of subsurface 
detection problems, e.g., engineering studies, 
environmental and hydro-geophysical 
investigations, and archaeological 
exploration. The ERT measurements are also 
applied to map geologic features such as 
lithology, structure, fractures, and 
stratigraphy; hydrologic features such as 
depth to the water table, depth to aquitard 
(impermeable layer), and groundwater 
salinity; and to delineate groundwater 
contaminants. As in any geophysical 
procedures, surface or borehole resistivity 
measurements do not provide a direct image 
of the Earth’s subsurface but simply the 
integrated effect of the subsurface properties, 
which could be far removed from the ground 
truth, in particular, in cases of complex 
subsurface property distribution. To infer an 
image of the subsurface resistivity 
distribution from a limited number of 
uncertain observations, a non-linear inverse 
problem needs to be formulated. The inverse 

direct current resistivity problem is generally 
ill-posed with respect to data uncertainties 
and incomplete data sets. Hence, 
regularization schemes must be incorporated 
in the inverse problem to find a unique and 
stable solution. Even though regularization 
plays a significant role in inverse problem 
theory, there is a large ambiguity in choosing 
it (Scales and Snieder, 1997). The most 
commonly used techniques for regularization 
of inverse problems are: 1) the projection 
methods, such as truncated singular value 
decomposition, and 2) penalty methods, such 
as Tikhonov-Phillips regularization, and total 
variation methods. In the Tikhonov-Phillips 
method, the regularization term consists of 
the squared norm of the sought solutions. The 
quadratic regularization methods smear out 
the edges of the desired model but non-
quadratic regularizations address the issue of 
stability without penalizing the required 
sharp boundaries. They usually require the 
solution to be sparse in a specific domain. 
Although non-quadratic regularization 
methods lead to further complexity of the 
problem compared to the quadratic 
approaches. For both of these approaches, a 
suitable regularization parameter should yield 
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a fair balance between the perturbation error 
and regularized solution. Whereas in most 
cases, the true subsurface geology exhibits a 
gradual variation in the electrical properties 
of layer boundaries, using the smoothness-
constrained method is more suitable to 
visualize the Earth’s structures. However, 
smoothing constraints are inconsistent with 
realistic circumstances when sharp bulk 
conductivity contrast exists in the subsurface. 
The development of direct resistivity 
inversions has progressed successfully. The 
first attempt for inversion of 2D resistivity 
data made by Pelton et al. (1978). Although 
their algorithm is not well suited to complex 
cases. Smith and Vozoff (1984) and Tripp et 
al. (1984) presented a 2D resistivity inversion 
using a finite-difference method. The 
schemes proposed by them are suitable for 
complicated 2D models but do not 
incorporate the effects of topography on 
resistivity data in the inversion algorithm. 
Tong and Yang (1990) developed an 
algorithm for 2D resistivity inversion where 
the topography is considered in the model. 
The paper of Loke and Barker (1996) 
proposed a Gauss-Newton-based algorithm 
for ERT inversion in the framework of finite-
difference. In recent years, the introduction 
of multi-channel instrument resulted in a 
renaissance of the geo-electrical data 
acquisition, and consequently, significant 
progress in 2D and 3D inverse modeling 
algorithms (e.g., Dahlin and Zhou, 2001; 
Zhou and Dahlin, 2003; Günther et al., 2006; 
Chambers et al, 2006; Oldenborger et al., 
2007; Wilkinson et al, 2008; Zhou et al., 
2014; Pang et al., 2020). In addition, an 
integral part of every electrical resistivity 
inversion is an accurate and efficient forward 
modeling resulting in the numerical 
simulation of responses for a given 
conductivity model. A numerical technique 
for the 2.5 dimensional DC resistivity 
forward calculation based on the finite-
difference method is provided. In this study, 
we developed and applied a model-space 
Occam’s method to the electrical resistivity 
tomography inversion. Mathematically, 
Occam's inversion is a generalized least-
squares inversion method under some 
specified model property constraint 
(Constable et al., 1987; De Groot-Hedlin and 
Constable, 1990). Thus it make the inversion 

method more stable and robust. This 
algorithm converges even in complex 
subsurface property distribution where other 
inversion algorithms may fail. The efficiency 
and applicability of our numerical strategy 
for 2D resistivity inverse modeling is tested 
using two synthetic case studies as well as a 
real dataset. Furthermore, the reliability of 
the recovered models is dealt with through a 
model sensitivity analysis based on the 
resolution density distribution. The rest of the 
paper is structured as follows: Section 2 
gives a brief review of the forward and 
inverse modeling formulation. Next, section 
3 verifies the functionality of the inversion 
algorithm using synthetic and real resistivity 
data sets. Finally, section 4 provides a short 
conclusion and summary. 
 
2. Methodology  
In this section, a brief description of the 
forward calculation in the framework of the 
finite- difference method is first provided. 
Then, we extend the inversion algorithm 
based on the model-space Occam’s method 
with the aim of seeking the smoothest or 
minimum structure model subject to a 
constraint on the misfit. In this study, the 
forward and inverse modeling codes are only 
developed with MATLAB scripts. 
 
2-1. Forward modeling formulation 
A first and significant step is to formulate 
and solve a 2.5-D direct current resistivity 
forward modeling routine. The advantage of 
the 2.5-D approach is that a physically 
realistic representation, involving full 3-D 
electrical potential distribution, is obtained 
by solving several problems with restricted 2-
D geometry in the wave number domain. In 
this way, the computational time is reduced 
compared to a full 3D modeling. An accurate 
and efficient forward calculation is the basis 
of most processes of the inversion. 
Calculation of resistivity forward responses 
is carried out using simulation of the current 
flow into the earth’s surface through solving 
Poisson’s equation. In this contribution, a 
finite-difference algorithm is applied to 
discretize the simulated models restricted by 
a mixed boundary condition. One of the 
merits of the finite-difference method over 
the other methods is its well-known ability to 
quickly approximate the solutions for any 
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arbitrary and complex structure models. The 
finite-difference method is relatively fast 
compared with the finite-element method. 
However, to include a general topography, 
the finite-element method becomes a better 
selection despite being computationally 
expensive. The partial differential equations 
governing the resistivity problem are 
obtained by using the principle of 
conservation of charge and the continuity 
equation, we have for a point source 
𝑟௦(𝑥௦. 𝑦௦. 𝑧௦) (Dey and Morrison, 1979). 
 

∇ ∙ 
1

𝜌(𝑥, 𝑦, 𝑧)
∇φ(𝑥. 𝑦. 𝑧)൨ = 

−𝐼𝛿(𝑥 − 𝑥௦)𝛿(𝑦 − 𝑦௦)𝛿(𝑧 − 𝑧௦)               (1) 

where 𝜌(𝑥, 𝑦, 𝑧) is the resistivity distribution 
in 3D space, φ(𝑥. 𝑦. 𝑧) is the electrical 
potential, 𝐼 is the point current source in the 
surface, and 𝛿 indicates the impulse function 
and the source location. To account for the 
3D source characteristic, a spatial Fourier 
transform of the partial differential equations 
with respect to a range of wave numbers is 
performed along the strike direction: 
 

φ൫𝑥. 𝑘௬. 𝑧൯ = 

∫ φ(𝑥. 𝑦. 𝑧) cos൫𝑘௬𝑦൯ 𝑑𝑦 
ஶ


                        (2) 

where φ indicates the transformed potential 
and 𝑘௬is the wave number with respect to 𝑦. 
Applying the Fourier-cosine transformation 
to the 3D Poisson Equation (1) yields a 2D 
Helmholtz equation, given by: 
 

∂

𝜕𝑥
𝜎(𝑥. 𝑧) +

∂φ

𝜕𝑥
+ 𝑘௬

ଶ𝜎(𝑥. 𝑧)φ − 
 

ப

డ௭
𝜎(𝑥. 𝑧)

ப

డ௭
= −

ூ

ଶ
𝛿(𝑥 − 𝑥௦)𝛿(𝑧 − 𝑧௦)    (3) 

The above equation is solved for a two-
dimensional domain restricted by a mixed 
boundary condition. To numerically solve 
Equation (3), it is required to construct a 
discrete model in the form of a rectangular 
grid with nodes at the cell center. Then, the 
existing partial derivatives are replaced by 
finite-difference formulas. Having obtained 
discrete representations for the governing 
equations and boundary condition at all 
nodes, the transformed forward problem can 
be written as a system of equations 
(McGillivray and Oldenburg, 1990). 

𝑹φ = 𝒒                                                       (4) 

𝑹 is a real sparse five-band symmetric matrix 
and 𝒒 is the source vector. The recent 
equation has to be solved for the vector φ 
containing the potentials for all existing 
nodes. Since the matrix 𝑹 is only dependent 
on the geometry and the physical property 
distribution, that is, for multiple current 
electrode positions this matrix remains 
unaltered, only one inverse of the matrix in 
terms of different wave numbers provides the 
solution to different sets of potential 
distribution for the different source positions. 
This action significantly reduces 
computational time. The solution φ is 
transformed from the wave number domain 
to the spatial domain following the procedure 
of Dey and Morrison (1979) and based on 
inverse cosine-Fourier transform, 
 

φ(𝑥. 𝑧) = 
ଶ

గ
∫ φ൫𝑥. 𝑘௬. 𝑧൯ cos൫𝑘௬𝑦൯ 𝑑𝐾௬ 

ஶ


                 (5) 

with this approach, we are able to forward-
model an electrical survey for any arbitrary 
conductivity distribution. In the following 
subsection, we discuss the inverse problem 
consisting in retrieving the subsurface 
conductivity distribution 𝜎(𝑥. 𝑧) from 
observations φ(𝑥. 𝑧). 
 
2-2. Inverse problem formulation 
In this subsection, based on the forward 
modeling code proposed by Ghanati et al 
(2020), a flexible inversion strategy is 
developed. Let the observed data be 
represented by the vector 𝒅 ∈ ℝ×ଵ 
contaminated by white Gaussian noise with 
zero-mean and variance 𝜀ଶ, model 
parameters by the vector 𝐦𝜖ℝ×ଵ, and the 
non-linear forward operator by 𝑓 ∈ ℝ× 
mapping the model parameters to the noisy 
data. The ERT nonlinear inversion problem 
is inherently ill-posed resulting in non-unique 
estimates of the hydro-geophysical 
parameters. To numerically solve the inverse 
problem, we must consider data fidelity, 
model residual, and physical constraints to 
reduce instability of the inversion and the 
size/dimension of the model space to increase 
the chance of obtaining a geologically 
meaningful model. To that end, we form a 
weighted sum of the data fidelity 𝛷𝒅 and the 
stabilizer function 𝛷𝐦 using a weighting 
factor 𝜇, and find the solution which 
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minimizes the objective function as given by: 
 

arg 𝑚𝑖𝑛𝐦∈ℝ×భ  (𝜓(𝐦, 𝜇)) = 

arg 𝑚𝑖𝑛𝐦∈ℝ×భ{𝛷𝐦 + 𝜇ିଵ𝛷𝒅}                   (6) 
 

equivalently 
 

arg 𝑚𝑖𝑛𝐦∈ℝ×భ(𝜓(𝐦, 𝜇)) =

arg 𝑚𝑖𝑛𝐦∈ℝ×భ ቂ൫𝐦 − 𝐦൯
்

ℒ
் ℒ൫𝐦 −

𝐦൯ + 𝜇ିଵ ቄ൫𝒅 − 𝑓(𝐦)൯
்

ΓΓ൫𝒅 − 𝑓(𝐦)൯ቅቃ   

  (7) 

ℒ is the constraint matrix defined as the 
first order roughening matrix to ensure a 
certain behavior of the model, Γ𝜖ℝ× is 
the data weighting matrix consisting of the 
inverse of the data error on the assumption 
that the noise for each experiment is 
independently but normally distributed, 𝜇 is 
the regularization parameter and 𝐦 
allows the specification of a given reference 
vector of prior information for the model 
parameter 𝐦. Because of the nonlinearity of 
the inverse problem, the inversion process 
starts with the linearization of the forward 
function 𝑓(𝐦) based on Taylor’s series 
expiation. Given a trial model 𝑚, using 
Taylor’s series expiation, we get: 
 

𝑓(𝐦ାଵ) = 𝑓(𝐦) + ∇𝑓(𝐦)(𝐦ାଵ − 𝐦)  (8) 

where ∇𝑓(𝐦) =
డ(𝐦ೖ)

డ𝐦ೕ
ೖ  (𝑖 = 1,2, … , 𝑚 and 

𝑗 = 1,2, … , 𝑛) is the Jacobian of 𝑓(𝐦) about 
the previous estimate 𝐦 derived from 
truncating higher order of terms of Taylor’s 
series expansion. The Jacobian matrix shows 
the variation of the forward response to the 
variation of model parameters. The 
construction of this matrix is very significant 
so that a part of the efficiency of the 
inversion process relies strongly on this 
Jacobian calculation routine. 
Using Equation (7), the cost function is 
written as follows: 
 

𝜓(𝛿𝐦, 𝜇) = arg 𝑚𝑖𝑛ஔ𝐦∈ℝ×భ൛𝜇ିଵ‖(δ𝒅 −

𝐽𝛿𝐦)‖షభ
ଶ + ‖ℒ(𝛿𝐦)‖ଶ

ଶൟ                         (9) 

Where 𝑱 denotes the Jacobian matrix, and 
δ𝒅 = [log 𝒅 − log 𝑓(𝐦)]. 
Solving the objective function produces the 
following results (Aster et al, 2011). 
 

𝛿𝐦ାଵ = 𝜗 × ൛(𝑱்(𝐦)ΓΓ𝑱(𝐦) +

𝜇ℒ
் ℒ)ିଵ × 𝑱்(𝐦)ΓΓ(𝒅 − 𝑓(𝐦)) −

𝜇ℒ
் ℒ(𝐦 − 𝐦)ൟ                                 (10) 

where 𝑱் is the transpose of matrix 𝑱, 𝑘 
shows the k-th iteration of the inversion 
process, δ𝐦ାଵ is a search direction, and 𝜗 
is the step length with positive value averting 
the iteration divergence. The Jacobian matrix 
or sensitvity function is computed using an 
efficient numerical approach based on the 
forward matrix calculation in the framework 
of the 2.5-D finite-difference electrical 
resistivity forward modeling. Appendix A 
provides a detail of constructing the 
sensitivity matrix corresponding to each 
datum point. Solving the inversion problem 
using the above relation may result in 
unrealistic estimates of resistivity 
distribution. More realistic solutions can be 
obtained by imposing physical constraints on 
model variations. Hence, it is necessary to 
use the transformation functions in the 
inversion algorithm in different iterations to 
avoid unrealistic model estimates. To this 
end, we follow the idea proposed by Kim and 
Kim (2011) to define the lower and upper 
bound constraints on the inverted model 
parameters. The process of minimization is 
implemented with a series of 𝜇 values aiming 
at choosing 𝜇 for which the smoothest model 
is achieved while the misfit 𝛷𝒅 is kept at the 
desired level. The motivation for seeking the 
smoothest model is that one does not wish to 
be misled by features that appear in the 
model but are not essential in matching the 
noisy measurements. In other words, of all 
the possible solutions (i.e., solotions which 
adequately fit the observations within a 
certain tolerance), we seek the simplest 
model in the sense that it requires the least 
spurious features not required by the 
observed data. This strategy is often referred 
to as Occam’s inversion wherein the 
inversion process is implemented in two 
steps: at the first step, the focus is on 
minimizing the misfit function to a 
prescribed tolerance (i.e., 𝜒ଶ = ‖𝐝 −

𝑓(𝐦)‖షభ
ଶ /𝑚, 𝑚 is the size of the data 

vector, moves close to one) in terms of a 
range of the regularization parameters, and 
the second step continues minimization of the 
objective function while keeping the misfit 
function constant at the desired level. The 
proposed inversion algorithm is summarized 
in Table 1 in the context of a model-space 
Occam's method. 
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Table 1. Algorithm Pseudocode corresponding to the model-space Occam’s inversion. 

Inputs: Observed data 𝒅𝜖ℝ×ଵ,     model 𝐦𝜖ℝ×ଵ and data weighting matrix Γ𝜖ℝ×  
Outputs: Inverted model parameters 𝐦𝜖ℝ×ଵ and resolution density matrix ℜ𝜖ℝ×  
Initialization: define a range of 𝜇 (𝑞 = 1, … , 𝑁), ℒ (constraint matrix defined as the first order 
roughening matrix), 𝐦 = 0 (when no a priori model or information is available) or 𝐦 =

𝐦ாௌ (𝐦ாௌ is the model derived from the inversion of vertical electrical sounding data), 𝜖 =
0.02, 𝑘 = 1, 𝜒

ଶ = 0 

While 𝜒ଶ > 1 or ቀฮ𝜒
ଶ − 𝜒ିଵ

ଶ ฮ
ଶ

ฮ𝜒
ଶฮ

ଶ
ൗ ቁ ≤ 𝜖 or maximum iteration is not reached do 

Comput 𝒅 = 𝑓(𝒎ିଵ) 
Compute δ𝒅 the discrepancy between the measured apparent resisticity data and the calculated one 
Compute the matrix 𝐽(𝒎ିଵ)𝜖ℝ× with respect to all model cells and meaurements  
For 𝜇, 𝑞 = 1, … , 𝑁 do 
Compute the model perturbation 𝛿𝐦 using Equation (10) 
Implement a linesearch algorithm to find the optimum value of 𝜗 
Update 𝛿𝐦 = 𝜗 × 𝛿𝐦 
Compute 𝐦 = 𝐦ିଵ + 𝛿𝐦 
Compue the data fidelity term 𝛷𝒅 = ‖𝐝 − 𝑓(𝐦)‖షభ

ଶ  
End for 
Choose the largest value for 𝜇 such 𝜒ଶ ≤ 1, otherwise select a 𝜇 minimizing 𝛷𝒅 
𝑘 = 𝑘 + 1 
Set 𝐦ିଵ = 𝐦 
End while 
 
3. Numrical experiments 
In this section, we present a set of 
experiments using two simulated examples 
and a real case from the Shahid Abad area in 
Iran to demonstrate the performance and 
reliability of the inversion algorithm. 
 
3-1. Synthetic data examples 
Here, the observed data derived from the two 
synthetic models are generated using 
RESIP2DMODE, an open-source MATLAB 
code for 2.5-D forward modeling of 
resistivity and induced polarization data 
(Ghanati et al., 2020). The apparent electrical 
resistivity responses of the synthetic models 
are simulated using the linear dipole-dipole 
configuration from position 0 up to 100 m 
with fixed electrode spacings of 5 m up to 8 
levels (𝑛 = 1 − 8, where 𝑛 indicates the 
number of receiver-transmitter dipole 
separation) leading to a total of 132  
 

measurements. For the 2.5-D forward 
modeling, we divide the model into a set of 
rectangular cells where the width of the 
work-area cells is the same as the unit 
electrode spacing and the depth of the  
cells logarithmically increases in the vertical 
direction. After the discretization, the model 
grid contains 22 × 99 regular cells. The  
first model (referred to as Example 1) 
consists of two rectangular bodies, one 
conductive (10 Ω𝑚) and the other resistive 
(1000 Ω𝑚), in a homogeneous medium of 
100 Ω𝑚 as shown in Figure 1. The second 
example (referred to as Example 2) has more 
complex properties, which comprises a 
layered structure having an embedded low 
conductive layer and a buried high-
conductive block in the middle of the section 
(see Figure 2(a)). Table 2 represents the geo-
electrical parameters associated with 
Examples 1 and 2. 

Table 2. Synthetic geo-electric parameters corresponding to Examples 1 and 2. 

 
Example 1 Example 2 

Block 1 Block 2 Background Layer 1 Layer 2 Layer 3 Block 
Resistivity 

(Ω𝑚) 
10 500 100 320 2300 550 300 
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As a further concession to realistic field 
situations, the forward modeling responses 
are perturbed with 3 percent uncorrelated 
Gaussian-distributed noise of zero mean 
depending on the magnitude of each datum 
point. During the inversion process, lower 
and upper bounding constraints for the 
resistivity values are defined as [𝜌௪ =
0, 𝜌௨ = 1000] Ω𝑚 and [𝜌௪ =
0, 𝜌௨ = 3000] Ω𝑚 for the first and 
second examples, respectively. Figures 1(b) 
and 2(b) indicate the resistivity pseudo-
sections of the noise-corrupted data 
corresponding to Examples 1 and 2, 
respectively. From the pseudo-sections, it is 

not possible to discern the true structures. To 
control the number of iterations during the 
inversion process, three stopping criteria are 
defined. That is, the inversion is terminated if 
1) 𝜒ଶ ≤ 1 or 2) maximum iteration is reached 
or 3) (‖𝜒

ଶ − 𝜒ିଵ
ଶ ‖ଶ ‖𝜒

ଶ‖ଶ⁄ ) ≤ 𝜖, 𝜖 = 0.02. The 
inversion begins with a uniform resistivity 
model (𝐦) derived from the geometric 
mean of the apparent resistivity data as the 
starting model. The sensitivity matrix is 
recalculated after each iteration, which is 
computationaly costly. Figures 1(c) and 2(c) 
show the resulting smooth inversion of the 
first and the second synthetic data, 
respectively.

 

 
                                         (a)                                                                         (b) 
 

 

                                         (c)                                                                            (d) 
 

Figure 1. The resulting inversion of the first synthetic example; a) The true resistivity model including two rectangulare 
bodies, one conductive (10 Ωm) and the other resistive (1000 Ωm), in a homogeneous medium of 100 Ωm, b) 
The noise-contaminated synthetic data set in a pseudo-section form, c) The inverted model based on the 
model-space Occam’s inversion, d) The theoretical data set in a pseudo-section form.  

 

 
                                           (a)                                                                          (b) 

 
                                           (c)                                                                           (d) 
Figure 2. The resulting inversion of the second synthetic example; a) The true resistivity model including three 

horizontal layers with resistivity values (ρଵ = 320 Ωm, ρଶ = 2300Ωm, ρଷ = 550 Ωm) from the top-most to 
lowest layer and a conductive block of 300 Ωm, b) The noise-contaminated synthetic data set in a pseudo-
section form, c) The inverted model based on the model-space Occam’s inversion, d) The theoretical data set 
in a pseudo-section form. 
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From these figures, it is obvious that  
the main features and structures of both 
synthetic models are well reproduced and 
there are no undesirable features (artifacts) 
on the inverted resistivity tomograms. In the 
case of Example 1, the top surfaces of the 
two blocks are well resolved at a depth of 
about 2.8 m, which is highly consistent with 
the true model (2.67 m). Besides, the 
inversion algorithm correctly retrieves the 
boundaries of the horizontal layers and the 
buried conductive block corresponding to the 
second example. In both examples, the 
inversion algorithm requires 9 and 6 
iterations to converge with the relative rms 

data misfit error (𝑅𝑅𝑀𝑆 =
ඨ

∑
(𝒅ష(𝐦))

మ

𝒅
మ


సభ


) 

values of 1.4% and 4.5% associated with 
Examples 1 and 2, respectively. Furthermore, 
the resulting 𝜒ଶ score are [𝜒ଵ

ଶ =
1.1 and 𝜒ଶ

ଶ = 1.52], meaning that the 
inverted models adequately fit the observed 
data within the error bound (see Figure 3). 
 
3-2. Field data example 
In the previous section, we showed the 
functionality and accuracy of our inversion 
algorithm to synthetic data sets.  Here, we 
provide a field example with known geology 
information aiming at demonstrating the 
capability and efficiency of the presented 
methodology in actual situations. The study 
area is located in the rural district of Shahid 
Abad in Qazvin province, Northwest Iran. At 
this site, based on the drill holes, the geology 
of the area comprises an unsaturated zone 

with a thickness of 1.5 m, followed by a 
fresh-water bearing layer consisting of fine 
sand and clayey sand until a depth of 5 m, 
underlined by a 4.5 m mudstone followed by 
mudstone mixed with siltstone layer until  
the bottom of the borehole. The acquisition 
of the 2D electrical resistivity data  
was conducted with the DMT RESECS 
resistivity instrument and 48 stainless steel 
electrodes. We used the Wenner array for  
its very good signal-to-noise ratio with  
an electrode spacing of 2 m and interval 
separation of 2 m up to 30 m. A total of 364 
measurements were taken. To construct the 
data weighting matrix using the measurement 
errors, in addition to normal measurements,  
a total of 364 reverse readings were also 
collected. It should be noted that in the 
Wenner array due to the different geometry 
of transmitter and receiver electrodes in 
normal and reverse measurements, it would 
be expected that the noise in the reverse 
measurements is larger than the noise in  
the forward measurements. Hence, regarding 
the Wenner array, care must be taken when 
using the procedure of reciprocity. To reduce 
the influence of noise on the inversion result, 
the resistivity measurements were filtered  
to remove noisy data. Filtering criteria were 
set to discard data whose injected current  
was less than 10 mA or whose standard 
deviation derived from the stacking errors 
was larger than 5%. Note that stacking errors 
are given by the averaging of stacks obtained 
by the electrical resistivity collection 
instrument. We follow the inversion strategy 
described for synthetic experiments. 

 

 
                                                  (a)                                                                 (b) 
Figure 3. The resulting relative rms misfit error (blue) and χଶ score (red) versus iteration number corresponding to a) 

Example 1 and b) Example 2. 
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The linearized inversion begins with a half-
space resistivity of 100 Ω𝑚, being the 
geometric average value of the measured 
electrical resistivity data. The grid 
discretization used for the inversion 
corresponds to 2000 model parameters on a 
rectilinear mesh. In Figures 4 (a) and (b) the 
observed resistivity data and the inverted 
resistivity tomogram obtained from the 
model-space Occam inversion algorithm are 
shown. We can see an approximately 2-m-
thick layer with high resistivity values, which 
is assigned to the vadose zone (unsaturated 
layer). Furthermore, there is a 5-m-thick 
layer characterized by low resistivity values 
in the middle of the section. This layer  
is consistent with the presence of a water-
saturated clayey sand layer existing at  
the site. It is also observed that the aquitard 
layer appears with higher resistivity values 
than the aquifer layer, which is due to  
the existance of the mudstone layer. 
Comparing the inversion results with a 
nearby lithology borehole information, a 
satisfactory match can be seen between the 
inverted resistivity tomogram and the ground 
truth.To see also the role of a priori 
information, the inversion scenario is 
implemented by incorporating a priori  
 

information based on a geo-electrical 
sounding data set conducted in the vicinity  
of the 2D resistivity profile. From the 
resulting inversion of the geo-electrical 
sounding data (see Ghanati and Müller-Petke, 
2021), we use a four-layer reference model 
with the geo-electrical parameters (𝜌ଵ =
55 Ωm, ℎଵ = 1.3 m; 𝜌ଶ = 12 Ωm, ℎଶ =
5.2 m; 𝜌ଷ = 40 Ωm, ℎଷ = 4.8 m; 𝜌ସ = 21 Ωm). 
The final inverted resistivity section 
incorporating the reference model is 
illustrated in Figure 5(b). By incorporating 
the reference model, Figure 5 indicates  
that we better resolve the lower and  
upper boundary of the aquifer. It is worth 
mentioning that in the resistivity section,  
the decrease of resolution with increasing 
depth may give rise to erroneous layer 
boundaries reconstruction. Figure 6(a) shows 
that the inversion process before including 
the reference model converged within  
five iterations reducing the 𝜒ଶscore from 
10.2 (RRMS = 9.37%) to 1. 3 (RRMS 
= 5.3%), while with incorporating the a 
priori information the convergence of the 
inversion algorithm is realized with six 
iterations reducing the 𝜒ଶscore from 10 
(RRMS = 15.1%) to 3.1 (RRMS = 9.2%) 
(see Figure 6(b)). 

 
                                     (a)                                                                               (b) 
 

 
                                     (c)                                                                              (d) 
 

Figure 4. Inversion results of the field data without incorporating the reference model; a) The field data in a pseudo-
section form, b) Inverted tomogram of the field data, c) The theoretical data set in a pseudo-section form, d) 
Resolution density ℜ distribution corresponding to the inverted model. The water table measured in the 
borehole can be found in depth of about 3 m from the subsurface. 
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                                         (a)                                                                            (b) 
 

 
                                           (c)                                                                           (d) 
Figure 5. Inversion results of the field data with incorporating the reference model; a) The field data in a pseudo-section 

form, b) Inverted tomogram of the field data without incorporating the reference model, c) The theoretical 
data set in a pseudo-section form, d) Resolution density ℜ distribution corresponding to the inverted model. 
The water table measured in the borehole can be found in depth of about 1.5 m from the subsurface. 

 

 
                                                (a)                                                                    (b) 
Figure 6. The resulting relative rms misfit error (blue) and χଶ score (red) versus iteration number obtained from the 

inversion of the field data (a) before and (b) after incorporating the reference model. 
 
Furthermore, to mathematically evaluate the 
resulting models, we follow the idea 
proposed by Zhdanov & Tolstaya (2006) and 
applied to the multi-expotensial inversion of 
surface-NMR data (Fallahsafari et al., 2020). 
This algorithm provides a posteriori appraisal 
of the quality of the inverted models by 
calculating a distribution of the resolution 
density as: 

ℜ = [∑ หΛఓห
ଶ

ୀଵ ]ି
భ

మ ‖𝒅‖ൗ                        (11) 

where ℜ stands for the resolution density 

distribution with the unit of 
ଵ

[ஐ୫]
 or [𝑆/m], 

𝚲ఓ is the generalized inverse of the Jacobian 
matrix so that 𝚲ఓ = ൫𝑱்(𝐦)ΓΓ𝑱(𝐦) +

𝜇ℒ
் ℒ൯

ିଵ
× 𝑱்(𝐦)ΓΓ. By knowing the 

distribution of the resolution density in the 
area of the inversion, it is possible to identify 
the parts of the inverse model that are well 
resolved (and therefore physically 
interpretable) and the parts that are poorly 
resolved.  
Using the general resolution theory outlined 
above, Figures 4(d) and 5(d) illustrate the 
depth and lateral variations of the resolution 
density ℜ corresponding to the area of the 
inversion shown in Figures 4(b) and 5(b), 
respectively. One can see that the resolution 
density decreases at the bottom and the sides 
of the inverted resistivity tomogram. 
 
4. Conclusions  
In this study, we have provided a 
smoothness-constrained inversion algorithm 
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referred to as Occam’s method aiming at 2.5-
D electrical resistivity inversion. We 
demonstrated that by searching the solution 
of the smoothest model, one does not wish to 
be misguided by structures that appear in the 
inverted model but are not essential in 
matching the noise corrupted observations. 
To verify the efficiency and accuracy of our 
developed ERT inversion code package 
(including the forward modeling algorithm, 
the Fréchet derivative computation, and the 
inversion algorithm), we applied the 
algorithm to a set of synthetic data examples 
and a real field data set. The numerical 
results demonstrated that the presented 
inversion algorithm provides stable inversion 
results and an acceptable representation of 
the main features and structure of the models 
without producing spurious effects. In the 
case of real data inversion, we followed two 
scenarios: 1) data inversion without any a 
priori information (i.e., 𝐦 = 0), and 2) 
data inversion with incorporating a reference 
model constructed based on the geological 
information and geo-electrical sounding data 
in the vicinity of the 2D resistivity profile. It 
was demonstrated that the inclusion of the 
reference model gives rise to better retrieval 
of the lower and upper boundaries of the 
saturated media (aquifer). Furthermore, to 
deal with the reliability of the inverted 
resistivity tomogram, a model sensitivity 
analysis was implemented based on the 
resolution density distribution. In summary, 
regardless of the theoretical aspects presented 
in this paper, the main contribution of this 
work is the better resolving of subsurface 
structures in terms of the resistivity 
distribution through a smoothness-
constrained inversion strategy without the 
presence of unnecessary features (artifacts) in 
the inverted models. 
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Appendix (A) 

 
In this appendix, we provide a brief description of the construction of the sensitivity function.  
Recall the final system of equations derived from the assembly of the element equations, which has 
the general form (Equation 4): 
 
𝑹 ∙ φ(𝑥, 𝑘௬, 𝑧) = 𝒒                                                                                                                        (A-1) 
 
Where 𝑹 is the capacitance matrix, φ is the Fourier-transformed vector potential for a given wave 
number (𝑘௬) and 𝒒 is the source term with a non-zero element corresponding to the source 
electrode position. Partial differentiation of the finite-difference equation with respect to the 
conductivity 𝜎 of a parameter 𝑛 yields: 
 

డ

డఙ
(𝑹 ∙ φ(𝑥, 𝑘௬, 𝑧)) =

డ𝒒

డఙ
                                                                                                           (A-2) 

 
and application of the chain rule (the source term is independent of the conductivity of the 
parameters) yields: 
 
𝑹ᇱ ∙ φ(𝑥, 𝑘௬, 𝑧) + 𝑹φᇱ(𝑥, 𝑘௬, 𝑧) = 0                                                                                            (A-3) 
 
Whereas the capacitance matrix 𝑹 and the Fourier-transformed vector potential φ(𝑥, 𝑘௬, 𝑧) are 
already known from the solution of the forward problem, the derivative of the measured potential 
with respect to each model cell can be easily and efficiently calculated. Furthermore, based on the 

structure of the capacitance matrix 𝑹, the matrix 
డ𝑹

డఙ
 with twelve non-zero elements has the size of 

𝑛௭ × 𝑛௫ × 𝑛௭ × 𝑛௫, where 𝑛௭ and 𝑛௫ are the number of model cells in the 𝑧 and 𝑥 directions, 
respectively. 
 


