Anthes, R. A. (2011). Exploring Earth’s atmosphere with radio occultation: Contributions to weather, climate and space weather. Atmospheric Measurement Techniques, 4(6), 1077–1103. https://doi.org/10.5194/AMT-4-1077-2011
                                                                                                                Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F., Ector, D., Healy, S. B., Ho, S.-P., Hunt, D. C., Kuo, Y.-H., & others. (2008). The COSMIC/FORMOSAT-3 mission: Early results. Bulletin of the American Meteorological Society, 89(3), 313–334.
                                                                                                                Anthes, R., Sjoberg, J., Feng, X., & Syndergaard, S. (2022). Comparison of COSMIC and COSMIC-2 Radio Occultation Refractivity and Bending Angle Uncertainties in August 2006 and 2021. Atmosphere, 13(5), 790. https://doi.org/10.3390/atmos13050790
                                                                                                                Bock, O., & Nuret, M. (2009). Verification of NWP model analyses and radiosonde humidity data with GPS precipitable water vapor estimates during AMMA. Weather and Forecasting, 24(4), 1085–1101.
                                                                                                                Fonseca, Y. B., Alexander, P., de la Torre, A., Hierro, R., LLamedo, P., & Calori, A. (2018). Comparison between GNSS ground-based and GPS radio occultation precipitable water observations over ocean-dominated regions. Atmospheric Research, 209, 115–122.
                                                                                                                Gong, S., Hagan, D. F. T., Wu, X., & Wang, G. (2018). Spatio-temporal analysis of precipitable water vapour over northwest China utilizing MERSI/FY-3A products. International Journal of Remote Sensing, 39(10), 3094–3110. https://doi.org/10.1080/01431161.2018.1437298
                                                                                                                Haji-Aghajany, S., Amerian, Y., Verhagen, S., Rohm, W., & Schuh, H. (2021). The effect of function-based and voxel-based tropospheric tomography techniques on the GNSS positioning accuracy. Journal of Geodesy, 95(7), 1–17. https://doi.org/10.1007/S00190-021-01528-2/METRICS
                                                                                                                Ho, S. P., Peng, L., Mears, C., & Anthes, R. A. (2018). Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013. Atmospheric Chemistry and Physics, 18(1), 259–274. https://doi.org/10.5194/ACP-18-259-2018
                                                                                                                Izanlou, S., Haji-Aghajany, S., & Amerian, Y. (2024). Enhanced Troposphere Tomography: Integration of GNSS and Remote Sensing Data With Optimal Vertical Constraints. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, 3701–3714. https://doi.org/10.1109/JSTARS.2024.3354884
                                                                                                                Jacob, D. (2001). The role of water vapour in the atmosphere. A short overview from a climate modeller’s point of view. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(6–8), 523–527.
                                                                                                                Kishore, P., Venkat Ratnam, M., Namboothiri, S. P., Velicogna, I., Basha, G., Jiang, J. H., Igarashi, K., Rao, S. V. B., & Sivakumar, V. (2011). Global (50°S–50°N) distribution of water vapor observed by COSMIC GPS RO: Comparison with GPS radiosonde, NCEP, ERA-Interim, and JRA-25 reanalysis data sets. Journal of Atmospheric and Solar-Terrestrial Physics, 73(13), 1849–1860. https://doi.org/10.1016/J.JASTP.2011.04.017
                                                                                                                Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., & Hardy, K. R. (1997). Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. Journal of Geophysical Research: Atmospheres, 102(D19), 23429–23465. https://doi.org/10.1029/97JD01569
                                                                                                                Li, X., Dick, G., Ge, M., Heise, S., Wickert, J., & Bender, M. (2014). Real-time GPS sensing of atmospheric water vapor: Precise point positioning with orbit, clock, and phase delay corrections. Geophysical Research Letters, 41(10), 3615–3621.
                                                                                                                Lien, T. Y., Yeh, T. K., Wang, C. S., Xu, Y., Jiang, N., & Yang, S. C. (2024). Accuracy verification of the precipitable water vapor derived from COSMIC-2 radio occultation using ground-based GNSS. Advances in Space Research, 73(9), 4597–4607. https://doi.org/10.1016/J.ASR.2024.01.041
                                                                                                                Liu, Z., Li, M., Zhong, W., & Wong, M. S. (2013). An approach to evaluate the absolute accuracy of WVR water vapor measurements inferred from multiple water vapor techniques. Journal of Geodynamics, 72, 86–94.
                                                                                                                Mateus, P., Mendes, V. B., & Pires, C. A. L. (2022). Global Empirical Models for Tropopause Height Determination. Remote Sensing, 14(17), 4303. https://doi.org/10.3390/rs14174303
                                                                                                                Mears, C. A., Wang, J., Smith, D., & Wentz, F. J. (2015). Intercomparison of total precipitable water measurements made by satellite-borne microwave radiometers and ground-based GPS instruments. Journal of Geophysical Research, 120(6), 2492–2504. https://doi.org/10.1002/2014JD022694
                                                                                                                Meng, X., Cheng, J., & Liang, S. (2017). Estimating land surface temperature from Feng Yun-3C/MERSI data using a new land surface emissivity scheme. Remote Sensing, 9(12), 1247.
                                                                                                                Mohammadi Ahoei, M. A., & Sam-Khaniani, A. (2024). Using the multivariate linear regression method to model the 2-meter air temperature from MODIS sensor data. Journal of the Earth and Space Physics, 50(3), 803–821. https://doi.org/10.22059/JESPHYS.2024.376789.1007609
                                                                                                                Rahimi, H., Asgari, J., & Nafisi, V. (2023). The effect of data sources on calculating mean temperature and integrated water vapor in Iran. Meteorological Applications, 30(6), e2167. https://doi.org/10.1002/met.2167
                                                                                                                SamKhaniani, A. (2023). Evaluation of GPS RO derived precipitable water vapor against ground-based GPS observations over Iran. Iranian Journal of Geophysics, 16(4), 85-100. doi: 10.30499/ijg.2022.343984.1426
                                                                                                                Sam-Khaniani, A., & Naeijian, R. (2024). Comparison of tropospheric delay models using ground based GPS ZTD values in the atmosphere of Iran. Journal of the Earth and Space Physics, 50(1), 23–36. https://doi.org/10.22059/JESPHYS.2023.353897.1007493
                                                                                                                Sharifi, M. A., Azadi, M., & Khaniani, A. S. (2016). Numerical simulation of rainfall with assimilation of conventional and GPS observations over north of Iran. Annals of Geophysics, 59(3). https://doi.org/10.4401/ag-6919
                                                                                                                Shi-Jie, F., Zang, J.-F., Peng, X.-Y., Su-Qin, W., Yan-Xiong, L., & Ke-Fei, Z. (2016). Validation of atmospheric water vapor derived from ship-borne GPS measurements in the Chinese Bohai Sea. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 27(2), 2.
                                                                                                                Shi, J., Xu, C., Guo, J., & Gao, Y. (2014). Real-time GPS precise point positioning-based precipitable water vapor estimation for rainfall monitoring and forecasting. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3452–3459.
                                                                                                                Sun, P., Wu, S., Zhang, K., Wan, M., & Wang, R. (2021). A new global grid-based weighted mean temperature model considering vertical nonlinear variation. Atmospheric Measurement Techniques, 14(3), 2529–2542. https://doi.org/10.5194/amt-14-2529-2021
                                                                                                                Sun, Y., Yang, F., Liu, M., Li, Z., Gong, X., & Wang, Y. (2023). Evaluation of the weighted mean temperature over China using multiple reanalysis data and radiosonde. Atmospheric Research, 285, 106664. https://doi.org/10.1016/j.atmosres.2023.106664
                                                                                                                Wang, J., Zhang, L., Dai, A., Van Hove, T., & Van Baelen, J. (2007). A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. Journal of Geophysical Research: Atmospheres, 112(D11).
                                                                                                                Wang, X., Zhang, K., Wu, S., Fan, S., & Cheng, Y. (2016). Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend. Journal of Geophysical Research, 121(2), 833–852. https://doi.org/10.1002/2015JD024181
                                                                                                                Ward, D. M., Kursinski, E. R., Otarola, A. C., Stovern, M., McGhee, J., Young, A., Hainsworth, J., Hagen, J., Sisk, W., & Reed, H. (2017). Retrieval of water vapor using ground-based observations from a prototype ATOMMS active cm-and mm-wavelength occultation instrument. Atmospheric Measurement Techniques Discussions, 1–36.
                                                                                                                Wick, G. A., Kuo, Y.-H., Ralph, F. M., Wee, T.-K., & Neiman, P. J. (2008). Intercomparison of integrated water vapor retrievals from SSM/I and COSMIC. Geophysical Research Letters, 35(21).
                                                                                                                Xia, P., Ye, S., Chen, B., Chen, D., & Xu, K. (2020). Improving the weighted mean temperature model: A case study using nine year (2007–2015) radiosonde and COSMIC data in Hong Kong. Meteorological Applications, 27(1), e1864. https://doi.org/10.1002/met.1864
                                                                                                                Yao, Y., Shan, L., & Zhao, Q. (2017). Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application. Scientific Reports, 7(1), 12465. https://doi.org/10.1038/s41598-017-12593-z
                                                                                                                Zhang, Q., Ye, J., Zhang, S., & Han, F. (2018). Precipitable water vapor retrieval and analysis by multiple data sources: Ground-based GNSS, radio occultation, radiosonde, microwave satellite, and NWP reanalysis data. Journal of Sensors, 2018(1), 3428303. https://doi.org/10.1155/2018/3428303
                                                                                                                Zhang, T., Wen, J., der Velde, R., Meng, X., Li, Z., Liu, Y., & Liu, R. (2008). Estimation of the total atmospheric water vapor content and land surface temperature based on AATSR thermal data. Sensors, 8(3), 1832–1845.