Evaluation of the reliability of ERA5-Land data in assessing minimum and maximum daily temperatures in Iran (1991-2020)

Document Type : Research Article

Authors

Climate Research Center (CRC), Research Institute of Meteorology and Atmospheric Sciences (RIMAS), Mashhad, Iran.

Abstract

In scientific research, the use of station data is often hindered by significant amounts of missing data and insufficient density of observation stations. This lack of comprehensive and representative data can significantly undermine our understanding of the phenomena under investigation. However, network-based databases have emerged as a promising solution to this challenge. One notable network database is the ERA5-Land, the latest reanalysis dataset from the European Center for Medium-Range Weather Forecasts (ECMWF). With a higher resolution than its predecessors, ERA5-Land has the potential to provide a more detailed and accurate representation of climatic conditions. Nevertheless, the reliability of this dataset in estimating Iran's maximum and minimum temperatures remains an open question. In this study, we aimed to evaluate the performance of the ERA5-Land climate database by comparing it to observation data from 143 stations across Iran during the normal climate period of 1991-2020. We calculated a range of statistical indices, including root mean square error (RMSE), Nash-Sutcliffe efficiency coefficient (NS), bias index, Mean absolute error (MAE), and Kling-Gupta coefficient (KGE), for both the maximum and minimum daily temperatures at each station. This comprehensive analysis allowed us to assess the spatial variations in the accuracy of the reanalyzed data. Furthermore, we delved deeper by analyzing the averages of these indicators in six regions that represent the diverse climatic conditions found within Iran. This approach enabled us better to understand the dataset's performance in different geographical settings. Our findings revealed that the ERA5-Land reanalysis data demonstrates good accuracy in estimating maximum and minimum temperatures in Iran. However, the performance is not uniform across the country. Daily maximum temperature data are generally more accurate than daily minimum data, with the latter being underestimated in most stations. Interestingly, the accuracy of the temperature estimates varies based on the climatic conditions. The data show the best performance in the warm cluster, while the poorest accuracy is observed in the cold cluster, particularly in the northwest of the country. This disparity highlights the importance of considering regional variations, when evaluating the reliability of reanalysis data. Seasonal accuracy also emerges from the analysis. The MAE values in ℃ for spring, summer, autumn, and winter seasons of maximum temperatures are 2.31, 2.16, 1.99, and 2.19, and for minimum temperatures are 2.6, 2.4, 2.4, and 2.3 respectively. The largest errors in estimating maximum and minimum daily temperatures occur during the spring season, while the lowest errors are observed in the autumn for maximum temperatures and the winter for minimum temperatures. Examining the annual accuracy trend reveals an interesting pattern. The annual MAE related to maximum temperature has increased from 1991 to 2020, with the highest error observed in 2020 across all climatic clusters. This suggests the need for continued monitoring and improvement of the reanalysis data to ensure its reliability in the face of evolving climate conditions.

Keywords

Main Subjects


حیدری، ا.؛ زرین، آ. و داداشی رودباری، ع. ع. (1402). بررسی کارایی نسخه‌های قطعی و احتمالاتی (چند عضوی همادی) مجموعه داده ERA5 در برآورد دمای ایران، مجله پژوهش‌های دانش زمین، 14 (4)، 1-20.
جوانشیری، ز.؛ اسعدی اسکویی، ا.؛ فلامرزی، ی. و عباسی، ف. (1401). ارزیابی دقت داده‌های بازتحلیل پایگاه‌های اقلیمی جهانی CFS-v2، MERRA-2، ERA-5 برای برآورد دمای متوسط در مناطق مختلف کشور، مجله ژئو فیزیک ایران، 16(2)، 1 –24.
سام خانیانی، ع. و محمدی، س. ع. (1401). مقایسه داده‌های بازتحلیل ERA5-Land با مشاهدات زمینی در ایران. مجله ژئوفیزیک ایران، 16(1)، 212-195.
شکری کوچک، س.؛ آخوند علی، ع. م. و شریفی، م. ر. (1398). معرفی و مقایسه عملکرد دو پایگاه جهانی داده بازتحلیل در برآورد دمای هوای روزانه بیشینه، کمینه و میانگین (مطالعه موردی: حوضه آبریز رودخانه حله). مجله ژئوفیزیک ایران، 13(3)، 68-53.
محمدآبادی، م.؛ مفیدی، ع.؛ زرین، آ. و داداشی رودباری، ع. ع. (1403). ارزیابی مجموعه داده‌های ERA5-Land، AgERA5 و MSWX در برآورد دما بر روی ایران. مجله ژئوفیزیک ایران، 18(4)، 159-131.
محمدی قلعه نی، م. و شرفی، س. (1401). ارزیابی دقت پایگاه‌ داده‌هایCRU TS4.05  و ERA5 برای متغیرهای بارش، دما و تبخیرتعرق پتانسیل در اقلیم‌های مختلف ایران، نشریه آبیاری و زهکشی ایران، (5) 16، 890-879.
Barbosa, S., & Scotto, M.G.  (2022). Extreme heat events in the Iberia Peninsula from extreme value mixture modeling of ERA5-Land air temperature. Weather and Climate Extremes, 36, 100448.
Beck, H.E., Pan, M., Roy, T., Weedon, G.P., Pappenberger, F., Van Dijk, A.I., Huffman, G.J., Adler, R.F., & Wood, E.F. (2019). Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrology and Earth System Sciences, 23(1). 207-224.
Cao, B., Arduini, G., & Zsoter, E. (2022). Brief communication: Improving ERA5-Land soil temperature in permafrost regions using an optimized multi-layer snow scheme. The Cryosphere, 16(7). 2701-2708.
Cao, B., Gruber, S., Zheng, D., & and Li, X. (2020). The ERA5-Land soil temperature bias in permafrost regions. The Cryosphere, 14(8). 2581-2595.
Copernicus Climate Change Service. (n.d.). Reanalysis ERA5-Land. Retrieved from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-ERA5-Land?tab=form.
Gupta, H.V., Kling, H., Yilmaz, K.K., & Martinez, G.F. (2009). Decomposition of the mean squared error and NSE performance criteria, Implications for improving hydrological modelling. Journal of hydrology, 377(1-2). 80-91.
Gatien, P., Arsenault, R., Martel, J.L., & St-Hilaire, A. (2022). Using the ERA5 and ERA5-Land reanalysis datasets for river water temperature modelling in a data-scarce region. Canadian Water Resources Journal/Revue Canadienne Des Ressources Hydriques, 1-18.
Guijarro, J. A. (2018). Homogenization of climatic series with Climatol, https://CRAN.R-project.org/package=climatol.
Izadi, N., Karakani, E.G., Saadatabadi, A.R., Shamsipour, A., Fattahi, E., & Habibi, M. (2021). Evaluation of ERA5 Precipitation Accuracy Based on Various Time Scales over Iran during 2000–2018. Water, 13(18). 2538.
Javanshiri, Z., Pakdaman, M., & Falamarzi, Y. (2021). Homogenization and trend detection of temperature in iran for the period 1960–2018. Meteorog Atmos Phys, 133, 1233-1250.
Tarek, M., Brissette, F.P., & Arsenault, R. (2020). Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrology and Earth System Sciences, 24(5). 2527-2544.
Yilmaz, M. (2023). Accuracy assessment of temperature trends from ERA5 and ERA5-Land. Science of The Total Environment, 856(2). 159182.
Zhao, P., & Zhibin H. (2022). A First Evaluation of ERA5-Land Reanalysis Temperature Product Over the Chinese Qilian Mountains. Frontiers in Earth Science, 10, 907730.
Zou, J., Lu, N., Jiang, H., Qin, J., Yao, L., Xin, Y., & Su, F. (2022). Performance of air temperature from ERA5-Land reanalysis in coastal urban agglomeration of Southeast China. Science of The Total Environment, 828, 154459.
Zhao, Peng & He, Zhibin. (2022). A First Evaluation of ERA5-Land Reanalysis Temperature Product Over the Chinese Qilian Mountains. Frontiers in Earth Science.