Aggarwal, C. C. (2023). Neural Networks and Deep Learning (2nd ed.). Springer, Switzerland. https://doi.org/10.1007/978-3-031-29642-0
Aki, K., & Richards, P. G. (2002). Quantitative seismology (2nd ed.). Sausalito, CA: University Science Books.
Alkhalifah, T. (2016). Full waveform inversion in an anisotropic world: Where are the parameters hiding?. EAGE Publications. https://doi.org/10.3997/9789462822023.
Araya-Polo, M., Jennings, J., Adler, A., & Dahlke, T. (2018). Deep-learning tomography. The Leading Edge, 37(1), 58-66.
Aster, R. C., Borchers, B., & Thurber, C. H. (2018). Parameter estimation and inverse problems (3rd ed.). Amsterdam, Netherlands: Elsevier.
Biswas, R., Sen, M. K., Das, V., & Mukerji, T. (2019). Prestack and poststack inversion using a physics-guided convolutional neural network. Interpretation, 7(3), SE161-SE174.
Boonyasiriwat, C., Valasek, P., Routh, P., Cao, W., Schuster, G. T., & Macy, B. (2009). A multiscale method for time-domain waveform tomography, Geophysics, 74(6), WCC59–WCC68.
Dablain, M. A. (1986). The application of high-order differencing to the scalar wave equation. Geophysics, 51, 54–66. http://dx.doi.org/10.1190/1.1442040
Dhara, A., & Sen, M. K. (2022). Physics-guided deep autoencoder to overcome the need for a starting model for full-waveform inversion. The Leading Edge, 41(6), 375–381. https://doi.org/10.1190/tle41060375.1.
Hashemi, H., Saadat, M., Bidhendi, M. N., & De Groot, P. (2021). Incorporating acquisition geometry in deep learning-based full waveform inversion. In 82nd EAGE Annual Conference & Exhibition, 2021(1), 1-5. European Association of Geoscientists & Engineers.
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3, 422–440.
Li, S., Liu, B., Ren, Y., Chen, Y., Yang, S., & Wang, Y. (2019). Deep learning inversion of seismic data. IEEE Transactions on Image Processing, 58(3), 2135–2149. https://doi.org/10.48550/arXiv.1901.07733
Ren, Y., Xu, X., Yang, S., Nie, L., & Chen, Y. (2020). A physics-based neural network way to perform seismic full waveform inversion. IEEE Access, 8, 112266–112277. https://doi.org/10.1109/ACCESS.2020.2997921
Saadat, M., Fakhari, M. G., Shoar, B. H., Salehi, E., & Aghazade, K. (2024a). Deep Semantic Segmentation for Automated Seismic Velocity Analysis. In 85th EAGE Annual Conference & Exhibition, 2024(1), European Association of Geoscientists & Engineers.
Saadat, M., Hashemi, H., & Nabi-Bidhendi, M. (2024b). Generalizable data driven full waveform inversion for complex structures and severe topographies. Petroleum Science, 21(6), 4025-4033.
Saadat, M., Salehi, E., Etminan, M., Yousefzadeh, A., & Nezamoleslami, H. (2022). Enhanced collapse feature extraction from high-resolution seismic data using convolutional neural network. Second EAGE Digitalization Conference and Exhibition, Vienna, Austria. https://doi.org/10.3997/2214-4609.202239084
Schuster, G. T. (2017). Seismic inversion investigations in geophysics no. 20. SEG. https://doi.org/10.1190/1.9781560803423
Song, C., & Alkhalifah, T. (2020). Wavefield reconstruction inversion via machine learned functions. SEG 2020, Houston. https://doi.org/10.1190/segam2020-3427351.1
Sun, B., & Alkhalifah, T. (2022). ML-misfit: A neural network formulation of the misfit function for full-waveform inversion. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.1011825
Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8). https://doi.org/10.1190/1.1441754
Versteeg, Roelof. (1994). The Marmousi experience: Velocity model determination on a synthetic complex data set. The Leading Edge. 13 (9), 927–936. doi:10.1190/1.1437051
Virieux, J., & Operto, S. (2009). An overview of full waveform inversion in exploration geophysics. Geophysics, 74(6), WCC1–WCC26. https://doi.org/10.1190/1.3238367
Wu, Y., & Lin, Y. (2019). InversionNet: A real time and accurate full waveform inversion with CNNs and continuous CRFs. IEEE Transcriptions of Computational Imaging. arXiv: 1811.0775v2. https://doi.org/10.48550/arXiv.1811.07875
Yang, F., & Ma, J. (2018). Deep-learning inversion: A next-generation seismic velocity model building method. Geophysics, 84(4). https://doi.org/10.1190/geo2018-0249.1
Zhang, Z., & Lin, Y. (2020). Data-driven seismic waveform inversion: A study on robustness and generalization. IEEE Transactions on Geoscience and Remote Sensing, 58(10), 6900–6913. https://doi.org/10.1109/TGRS.2020.2977635