Brachet, M. (2018). Schémas compacts hermitiens sur la sphère: applications en climatologie et océanographie numérique. PhD thesis, Université de Lorraine.
Brachet, M., & Croisille, J.-P. (2022). A center compact scheme for the shallow water equations on the sphere. Computers & Fluids, 236, 105286.
Durran, D. R. (2010). Numerical Methods for Fluid Dynamics: With Applications to Geophysics. New York, NY: Springer New York.
Harris, L. M., Lauritzen, P. H., & Mittal, R. (2011).
A flux-form version of the conservative semi- Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid. Journal of
Computational Physics, 230(4), 1215–1237.
Kageyama, A., & T. Sato (2004). “Yin-Yang grid”: An overset grid in spherical geometry. Geochemistry, Geophysics, Geosystems 5(9). Q09005.
Kent, J., Ullrich, P. A., & Jablonowski, C. (2014). Dynamical core model intercomparison project: Tracer transport test cases. Quarterly Journal of the Royal Meteorological Society, 140(681), 1279–1293.
Levy, M. N., Nair, R. D., & Tufo, H. M. (2009). A high-order element-based Galerkin method for the barotropic vorticity equation. International Journal for Numerical Methods in Fluids, 59(12), 1369–1387.
Nair, R., Côté, J., & Staniforth, A. (1999). Cascade interpolation for semi-Lagrangian advection over the sphere. Quarterly Journal of the Royal Meteorological Society, 125(556), 1445–1468.
Nair, R. D., Thomas, S. J., & Loft, R. D. (2005). A discontinuous Galerkin transport scheme on the cubed sphere. Monthly Weather Review, 133(4), 814–828.
Phillips, N. A. (1957). A map projection system suitable for large-scale numerical weather prediction. Journal of the Meteorological Society of Japan., Ser. II 35A, 262–267.
Purser, R. J. (1998). Non-standard grids. In Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling, 7-11 September 1998, 44–72.
Purser, R. J., & Rančić, M. (1997, March). Conformal octagon: An attractive framework for global models offering quasi-uniform regional enhancement of resolution. Meteorology and Atmospheric Physics, 62(1), 33–48.
Purser, R. J., & Rančić, M. (1998). Smooth quasi-homogeneous gridding of the sphere. Quarterly Journal of the Royal Meteorological Society 124(546), 637–647.
Rančić, M., Purser, R. J., & Mesinger, F. (1996). A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Quarterly Journal of the Royal Meteorological Society, 122(532), 959–982.
Ronchi, C., Iacono, R., & Paolucci, P. (1996). The “cubed sphere”: A new method for the solution of partial differential equations in spherical geometry. Journal of Computational Physics, 124(1), 93–114.
Rood, R. B. (2011). A perspective on the role of the dynamical core in the development of weather and climate models. In P. Lauritzen, C. Jablonowski, M. Taylor, and R. Nair (Eds.), Numerical Techniques for Global Atmospheric Models, 513–537. Berlin, Heidelberg: Springer Berlin Heidelberg.
Sadourny, R. (1972). Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Monthly Weather Review, 100(2), 136–144.
Sadourny, R., Arakawa, A., & Mintz, Y. (1968). Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere. Monthly Weather Review, 96(6), 351–356.
Staniforth, A., & Thuburn, J. (2012). Horizontal grids for global weather and climate prediction models: a review. Quarterly Journal of the Royal Meteorological Society, 138(662), 1–26.
Taylor, M., Tribbia, J., & Iskandarani, M. (1997). The spectral element method for the shallow water equations on the sphere. Journal of Computational Physics, 130(1), 92–108.
Thomas, S. J., & Loft, R. D. (2000). Parallel semi-implicit spectral element methods for atmospheric general circulation models. Journal of Scientific Computing, 15(4), 499–518.
Thomas, S. J., & Loft, R. D. (2002). Semi-implicit spectral element atmospheric model. Journal of Scientific Computing, 17(1), 339–350.
Thuburn, J. (2011). Conservation in dynamical cores: What, how and why? In P. Lauritzen, C. Jablonowski, M. Taylor, and R. Nair (Eds.), Numerical Techniques for Global Atmospheric Models, 345–355. Berlin, Heidelberg: Springer Berlin Heidelberg.
Thuburn, J., Cotter, C. J., & Dubos, T. (2014). A mimetic, semi-implicit, forward-in-time, finite volume shallow water model: comparison of hexagonal–icosahedral and cubed-sphere grids. Geoscientific Model Development, 7(3), 909–929.
Williamson, D. L. (1968). Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus, 20(4), 642–653.
Williamson, D. L. (1970). Integration of the primitive barotropic model over a spherical geodesic grid. Monthly Weather Review, 98(7), 512–520.
Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R., & Swarztrauber, P. N. (1992). A standard test set for numerical approximations to the shallow water equations in spherical geometry. Journal of Computational Physics, 102(1), 211– 224.
Yazgi, D., Mohebalhojeh, A. R., & Ghader, S. (2017). Using polynomial regression in designing the time filters for the leapfrog time-stepping scheme. Monthly Weather Review, 145(5), 1779–1795.
Zdunkowski, W., & Bott, A. (2005). Dynamics of the Atmosphere: A Course in Theoretical Meteorology. Cambridge University Press.