The Study of the Characteristics of the Spring Season Cyclogenesis in Different Phases of the Madden-Julian in Mediterranean Region

Document Type : Research Article

Authors

1 Department of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.

2 Department of Hydraulic Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.

3 Department of Atmospheric and Oceanic Sciences, Imam Khomeini University of Marine Sciences, Nowshahr, Iran.

Abstract

The MJO is the dominant mode of sub-seasonal variability in tropical and subtropical regions and plays a crucial role in the atmosphere-ocean circulation system. Numerous studies have investigated the effects of the Madden-Julian Oscillation on precipitation and temperature. In Iran, this phenomenon has also attracted attention, and several studies have been conducted to assess its impact on the country's climate variations. However, historical reviews show that the predictive use of this phenomenon has been less emphasized. Moreover, the MJO significantly affects the behavior of cyclones in the region, and the annual phase changes of the MJO have substantial impacts on the distribution, movement tracking, and intensity of cyclones entering Iran. In this study, to examine the cyclogenesis conditions during different phases of the Madden-Julian Oscillation (MJO) in the Mediterranean region during the warm season (March, April, and May), MJO, OLR index data and Mean sea level pressure data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 section between 1989 and 2020 were utilized. Cyclogenesis characteristics in three aspects—frequency, depth, and cyclone tracking—were analyzed using the Melbourne University Cyclone Detection and Tracking Algorithm. In this analysis, days with MJO occurrences having an amplitude of 0.75 or higher, and phases one through eight where this amplitude was consecutively maintained, were extracted as the study period. Due to the limited number of selected periods based on the mentioned conditions, phases that missed one cycle were also included, resulting in 34 selected periods for the warm season overall. Filters were applied to the extracted data using the Melbourne University algorithm, including: a) Only cyclones located within the defined spatial and temporal boundaries (10-55°E / 10-45°N, during 1989-2020) were considered. b) Cyclones lasting less than 24 hours (four time steps: 00:00, 06:00, 12:00, 18:00) were excluded. c) Cyclones identified over multiple time steps (assigned identical numbers) were reviewed, and only the instance with the lowest recorded pressure was considered. d) The median pressure during selected days of different phases was calculated, with the maximum surface pressure of 1005.8 hPa for the warm season. The study of OLR indicates that in phases 1, 2 and 7, the most negative OLR anomaly occurrs over the Middle East and especially over Iran, which indicates the occurrence of convective currents with cloudiness in different regions of Iran. The study of the characteristics of the cyclones in the region showed that phase 8 with more than 17% has the most and phases 1 and 4 with nearly 9.36% have the lowest cyclogenesis area in the study region. In terms of distribution, out of the 25 cases of minimum pressure in warn season, 17, 6, and 2 cases are related to April, March, and May, respectively. The tracking of the cyclogenesis indicated that in phase 1, most of the cyclogenesis were on the Mediterranean Sea and very few cases were formed in its castern area. At the same time, in phase 2, along with the formation of cyclones in the eastern Mediterranean, some of them have entered Iran. In phases 3 and 4 in the north and center of Iraq, the cyclones have traveled their path, and in phases 5 and 6, the majority of the cyclones were over the Mediterranean, and in phases 7, they reached their peak, and the majority of the cyclogenesis were in the central to southern regions of Iraq. The formed cyclone in phase 8 over the Mediterranean Sea have a different behavior and at the same time they have traveled longer paths than other cyclones in different phases. The results of examining the cyclogenesis characteristics during the warm season in different phases of the Madden-Julian Oscillation (MJO) over the Mediterranean Sea reveal that the highest negative anomaly of the OLR index occurs in phase 1 of this oscillation, with its primary focus on Iran. The study of cyclogenesis areas indicates that cyclonic activity during the warm period of the year is asymmetrically distributed. In various phases of the MJO, most cyclones during the warm season are concentrated over Iraq and the western and northwestern regions of Iran, while other cyclonic cores form over the southern of the Persian Gulf and the Arabian Peninsula. The findings from the number of cyclogenesis centers show that out of 25 cases of minimum pressure during the warm season, 17 cases occurred in April, 6 in March, and 2 in May. Cyclone tracking in the region revealed that cyclones formed over the Mediterranean Sea travelled longer distances.

Keywords

Main Subjects


احمدی، م. و جعفری، ف. (1397). مسیریابی کامل و تحلیل سینوپتیک یک نمونه مطالعاتی از سامانه‌های منجر به بارش‌های سنگین بیش از 50 میلی‌متر در جنوب ایران. تحلیل فضایی مخاطرات محیطی. 5(3)، 83-102.
پورکریم، ر.؛ عساکره، ح.؛ فرجی، ع. و خسروی، م. (1401). واکاوی روند تغییرات شمار مراکز چرخندی دریای مدیترانه در بازه زمانی (۲۰۱۸-۱۹۷۹). تحلیل فضایی مخاطرات محیطی. ۹ (۴)، ۲۱۱-۲۲۲.
رزقی جهرمی، زهرا؛ نصر اصفهانی، محمدعلی؛ محمدی، جهانگرد، قاسمی، احمدرضا (1398). بررسی میزان تأثیر فازهای پدیده نوسان مادن جولیان بر بارش و رواناب سه رودخانه مهم استان فارس. پژوهش آب ایران، 13(1): 79-90.
زینالی، ب.؛ صلاحی، ب.؛ نوروزپرست، ه. و مینایی، س. (1400). بررسی ارتباط نوسانات چرخندگی تغییرات اقلیمی بارش‌های شمال غرب ایران (مطالعه موردی: ایستگاه سردشت). پژوهش‌های تغییرات آب‌و‌هوایی. 2(8)، 35-54.
سیدنژاد گل خطمی، ن.؛ بذرافشان، ج.؛ نازی قمشلو، آ. و ایران‌نژاد، پ. (1398). تحلیل مکانی احتمال رخداد بارش در ایران در فازهای مختلف سیگنال اقلیمی مادن-جولیان. نشریه هواشناسی و علوم جو، (3)2، 201-192.
طهماسبی پاشا، ا.؛ میرزایی، م. و محب‌الحجه، ع. ر. (1400). بررسی ارتباط شاخص‌های همرفتی و دورپیوندی در منطقه غرب آسیا. مجله ژئوفیزیک ایران، (3)15، 26-1.
عساکره، ح. و خجسته، آ. (1400). فراوانی ورود چرخندهای مدیترانه‌ای به ایران و اثر آنها بر بارش‌های فراگیر. مخاطرات محیط طبیعی،10(27)، 159-176.
علیجانی (1382). کتاب آب‌و‌هوای ایران. انتشارات پیام نور، تهران.
کاویانی، م. ر. و علیجانی، ب. (1391). مبانی آب‌وهواشناسی. انتشارات سمت، تهران، 532.
مجلسی راد، م. (1403)، تحلیل همدیدی ارتباط نوسان مادن جولیان(MJO)  با بارش و دما در نواحی جنوبی کشور، پایان‌نامه کارشناسی ارشد، دانشگاه تهران. استاد راهنما: قاسم عزیزی.
محمدپور، ک.؛ حجازی‌زاده، ز.؛ سلیقه، م. و قائمی، ه. (1402). واکاوی بی‌هنجاری بارش‌های ایران تحت‌تأثیر نوسان مادن جولیان طی دوره (1980-2020). پژوهش‌های اقلیم‌شناسی. 1401(55)، 1-14.
مهرآور، ص.؛ قائد امینی، ح. و ناظم­السادات، س. م. ج. (1397). بررسی پیوند نوسان‌های مادن-جولیان با النینو-نوسان‌های جنوبی و بازخورد آن بر بارش‌های پاییزه استان فارس. مجله ژئوفیزیک ایران، 12(2)، 126-109.
موحدی، س. و کاوسی، ر. (1393). بررسی همدید کنش‌های چرخندی بر روی ایران. تحقیقات جغرافیایی، 29(115)، 97-112.
ناظم­السادات، س. م. ج.؛ رستم‌پور، آ. و شاهقلیان، ک. (1395). الگوهای همدیدی در دوران همراه و بدون بارش هم‌زمان با چیرگی فاز 1 پدیده MJO: مطالعه موردی جنوب باختری ایران. مجله ژئوفیزیک ایران، 10(1)، 87-73.
نصر اصفهانی، م. ع.؛ محب‌الحجه، ع. ر. و احمدی گیوی، ف. (1396). آثار فازهای مختلف نوسان مدن-جولین بر برخی کمیت‌های هواشناختی وردسپهر در جنوب ‌غرب آسیا. مجله فیزیک زمین و فضا، 43(3)، 539-552.
Akhtar, N., Brauch, J., Dobler, A., Béranger, K., & Ahrens, B. (2014). Medicanes in an ocean–atmosphere coupled regional climate model. Natural Hazards and Earth System Sciences, 14(8), 2189-2201.
Ammar, K., El-Metwally, M., Almazroui, M., & Abdel Wahab, M. M. (2014). A climatological analysis of Saharan cyclones. Climate dynamics, 43, 483-501. DOI: https://doi.org/10.1007/s00382-013-2025-0
Aragão, L., & Porcù, F. (2022). Cyclonic activity in the Mediterranean region from a high-resolution perspective using ECMWF ERA5 dataset. Climate Dynamics, 58(5), 1293-1310.
Befort, D. J., Wild, S., Kruschke, T., Ulbrich, U., & Leckebusch, G. C. (2016). Different long‐term trends of extra‐tropical cyclones and windstorms in ERA‐20C and NOAA‐20CR reanalyses. Atmospheric Science Letters, 17(11), 586-595.
Catto, J.L., Ackerley, D., Booth, J.F., Champion, A.J., Colle, B.A., Pfahl, S., Pinto, J.G., Quinting, J.F. and Seiler, C. (2019). The future of midlatitude cyclones. Curr Clim Change Rep, 5, 407–420.
Du, D., Subramanian, A. C., Han, W., Chapman, W. E., Weiss, J. B., & Bradley, E. (2024). Increase in MJO predictability under global warming. Nature Climate Change, 14(1), 68-74.
Flocas, H. A., Simmonds, I., Kouroutzoglou, J., Keay, K., Hatzaki, M., Bricolas, V., & Asimakopoulos, D. (2010). On cyclonic tracks over the eastern Mediterranean. Journal of Climate, 23(19), 5243-5257.
Haertel, P. (2022). Kelvin and Rossby Wave Contributions to the Mechanisms of the Madden–Julian Oscillation. Geosciences, 12(9), 314.
Hoskins, B. J., & Hodges, K. I. (2019). The annual cycle of Northern Hemisphere storm tracks. Part I: Seasons. Journal of Climate, 32(6), 1743-1760. https://doi.org/10.1175/2010EI370.1.
Ilie, V. A., Croitoru, A. E., & Man, T. C. (2021). Mediterranean Cyclones Tracks in Europe with Special View over Romania (1985-2015). Scientific Research & Education in the Air Force-AFASES, 2021.
Iordanidou, V., Koutroulis, A. G., & Tsanis, I. K. (2014). A probabilistic rain diagnostic model based on cyclone statistical analysis. Advances in Meteorology, 2014(1), 498020.
Jamshidi Khezeli, T., Ranjbar Saadat Abadi, A., Nasr-Esfahany, M. A., Tajbakhsh Mosalman, S., & Mohebalhojeh, A. R. (2022). Autumn and Winter Extreme Precipitation Events and their Relationship with ENSO, NAO and MJO Phases over the West of Iran. Journal of the Earth and Space Physics, 47(1), 201-218.
Jia, X., Chen, L., Ren, F., & Li, C. (2011). Impacts of the MJO on winter rainfall and circulation in China. Advances in Atmospheric Sciences, 28, 521-533. doi: 10.1007/s00376-010-9118-z
Knutson, T. R., & Weickmann, K. M. (1987). 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Monthly Weather Review, 115(7), 1407-1436.
Kouroutzoglou, J., Flocas, H. A., Keay, K., Simmonds, I., & Hatzaki, M. (2011). Climatological aspects of explosive cyclones in the Mediterranean. International Journal of Climatology, 31(12), 1785-1802.
Lau, W. K. M., & Waliser, D. E. (2011). Intraseasonal variability in the atmosphere-ocean climate system. 2nd ed., 613 pp., Springer Science & Business Media, Heidelberg, Germany.
Liebmann, B., & Smith, C. A. (1996). Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77(6), 1275-1277.
Lim, E. P., & Simmonds, I. (2007). Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001. Journal of Climate, 20(11), 2675-2690. DOI:10.1175/JCLI4135.1.
Lionello, P., Trigo, I.F., Gil, V., Liberato, M.L., Nissen, K.M., Pinto, J.G., Raible, C.C., Reale, M., Tanzarella, A., Trigo, R.M., & and Ulbrich, S., (2016). Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus A: Dynamic Meteorology and Oceanography, 68(1), 29391.
Madden, R. A., & Julian, P. R. (1994). Observations of the 40–50-day tropical oscillation—A review. Monthly Weather Review, 122(5), 814-837.
Madden, R. A., & Julian, P. R. (1972). Description of global-scale circulation cells in the tropics with a 40–50 day period. Journal of the atmospheric sciences, 29(6), 1109-1123.
Madden, R. A., & Julian, P. R. (1971). Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Journal of the atmospheric sciences, 28(5), 702-708.
Miller, D. E., Gensini, V. A., & Barrett, B. S. (2022). Madden-Julian oscillation influences United States springtime tornado and hail frequency. npj Climate and Atmospheric Science, 5(1), 37. doi:10.1038/s41612-022-00263-5.
Mylonas, M. P., Douvis, K. C., Polychroni, I. D., Politi, N., & Nastos, P. T. (2019). Analysis of a mediterranean tropical-like cyclone. Sensitivity to WRF parameterizations and horizontal resolution. Atmosphere, 10(8), 425.
Nazemosadat, M. J., & Shahgholian, K. (2017). Heavy precipitation in the southwest of Iran: association with the Madden–Julian Oscillation and synoptic scale analysis. Climate Dynamics, 49, 3091-3109.
Nissen, K. M., Leckebusch, G. C., Pinto, J. G., & Ulbrich, U. (2014). Mediterranean cyclones and windstorms in a changing climate. Regional environmental change, 14, 1873-1890.
Pezza, A. B., Simmonds, I., & Renwick, J. A. (2007). Southern Hemisphere cyclones and anticyclones: Recent trends and links with decadal variability in the Pacific Ocean. International Journal of Climatology, 27(11), 1403-1420. DOI: 10.1002/joc.1477.
Pinto, J. G., Spangehl, T., Ulbrich, U., & Speth, P. (2005). Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorologische Zeitschrift, 14(6), 823-838. Doi: 10.1127/0941-2948/2005/0068
Pinto, J. G., Ulbrich, U., Leckebusch, G. C., Spangehl, T., Reyers, M., & Zacharias, S. (2007). Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Climate Dynamics, 29, 195-210.
Pohl, B., & Matthews, A. J. (2007). Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. Journal of Climate, 20(11), 2659-2674. https://doi.org/10.1175/JCLI4230.1
Pourasghar, F., Tozuka, T., Ghaemi, H., Oettli, P., Jahanbakhsh, S., & Yamagata, T. (2015). Influences of the MJO on intraseasonal rainfall variability over southern Iran. Atmospheric Science Letters, 16(2), 110-118. https://doi.org/10.1002/asl2.531
Ragone, F., Mariotti, M., Parodi, A., Von Hardenberg, J., & Pasquero, C. (2018). A climatological study of western mediterranean medicanes in numerical simulations with explicit and parameterized convection. Atmosphere, 9(10), 397.
Raible, C. C., Della-Marta, P. M., Schwierz, C., Wernli, H., & Blender, R. (2008). Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses. Monthly Weather Review, 136(3), 880-897. DOI: https://doi.org/10.1175/2007MWR2143.1
Simmonds, I., Murray, R.J., & Leighton, R.M. (1999). A refinement of cyclone tracking methods with data from FROST. Aust. Meteor. Mag., Special Issue, 35–49.
Simmonds, I., & Keay, K. (2000). Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP–NCAR reanalysis. Journal of Climate, 13(5), 873-885.
Trigo, I. F., Davies, T. D., & Bigg, G. R. (1999). Objective climatology of cyclones in the Mediterranean region. Journal of climate, 12(6), 1685-1696.
Trigo, I.F., Liberato, M.L., Nissen, K., Pinto, J.G., Lionello, P., Trigo, R.M., Ulbrich, S., Ulbrich, U., & Ordóñez, P. (2013). A multi-method analysis of cyclone activity in the Mediterranean Region. In EGU General Assembly Conference Abstracts, EGU2013-9689
Wheeler, M. C., & Hendon, H. H. (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly weather review, 132(8): 1917-1932. doi: https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
Yulihastin, E., Satyawardhana, H., & Nugroho, G. A. (2017). MJO modulation on diurnal rainfall over West Java during pre-monsoon and strong El Niño periods. In IOP Conference Series: Earth and Environmental Science, 54(1), 012029. IOP Publishing.
Zhang, C. (2005). Madden‐Jjulian oscillation. Reviews of Geophysics, 43(2), 1-36.
Zhang, C. (2013). Madden–Julian oscillation: Bridging weather and climate. Bulletin of the American Meteorological Society, 94(12): 1849-1870. https://doi.org/10.1175/BAMS-D-12-00026.1
Zhang, L., Wang, B., & Zeng, Q. (2009). Impact of the Madden–Julian oscillation on summer rainfall in southeast China. Journal of Climate, 22(2), 201-216. doi: 10.1175/2008JCLI1959.1.