Variability analysis of effective teleconnection signals on Iran's climate

Document Type : Research Article

Author

Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran.

Abstract

Temporal variations in local and global climate are often influenced by changes in teleconnection patterns. These patterns are key phenomena arising from fluctuations in variables such as sea surface temperature (SST) and sea level pressure (SLP), which exhibit spatio-temporal variability, governed by stable and recurring atmospheric and oceanic processes. Consequently, teleconnection signals can induce oscillations in the climate system. Among the most influential indices are the East Atlantic-West Russia (EA-WR) pattern, the Mediterranean Oscillation (MO), the North Atlantic Oscillation (NAO), the Quasi-Biennial Oscillation (QBO), and the Southern Oscillation Index (SOI), all of which can significantly affect atmospheric variability across different regions of Iran.
Identifying the dominant variabilities within each climate index and examining the potential relationships among these signals is a critical first step in assessing their impact on regional climate variables. This is important because some indices may share common fluctuations within specific time scales (i.e. frequency bands), potentially producing similar effects on climatic variables such as precipitation, temperature, and pressure. By accounting for these shared fluctuations, the net influence of each teleconnection index can be more accurately evaluated.
Given the importance of teleconnection indices and their role in shaping various climatic variables in Iran, a comprehensive understanding of the patterns embedded in these signals — across high-, medium-, and low-frequency oscillations — is essential. Moreover, elucidating the temporal relationships between pairs of global circulation indices is critical for understanding climate evolution at multiple frequencies, particularly in the context of Iran climate.
In this study, monthly data were obtained from relevant international archives, and the signals were decomposed into distinct frequency bands using optimal digital filters. Correlation analyses, including auto- and cross-correlation functions, were applied to examine the linear relationships between similar variabilities across the signals at different time lags. Additionally, power spectral density (PSD) analysis was used to compare the strength of each teleconnection signal within selected frequency bands.
The results reveal significant correlations among certain teleconnection signals at specific time scales. For example, at the annual time scale (10–14 months), the corresponding components of the EA-WR and NAO signals exhibit a strong direct correlation at zero lag (correlation coefficient: 0.564). The variance distribution across frequency bands is also distinctive for each index. Specifically, over 80% of the variability in the monthly QBO signal occurs quasi-cyclically on time scales of 14 months to 3 years, primarily around 28 months. For the EA-WR and NAO indices, a substantial portion of variability (45%–55%) occurs on the 2–5 month scale (high-frequency component), with limited correlation between these short-term fluctuations. High-frequency variations dominate the MO signal, whereas the SOI exhibits substantial variability across most time scales except for the annual scale. For low-frequency variability (time scales greater than 7 years), a significant negative correlation exists between SOI and the other teleconnection indices, that can have implications for climate patterns over Iran.

Keywords

Main Subjects


ایران­نژاد، پ.؛ احمدی گیوی، ف. و نیکویی، ن. (1395). مطالعه بی­هنجاری دمای زمستان ایران با استفاده از داده­های بازتحلیل NCEP/NCAR. مجله ژئوفیزیک ایران، 10(4)، 12-27.
پژوهش، ف.؛ نصراصفهانی، م.ع. و قاسمی، ا.ر. (1404). تأثیر الگوهای دورپیوندNAO وENSO بر فراوانی و شدت وقوع رودخانه‌های جوی در ایران. مجله پژوهش آب ایران، 19(1)، 61-69.
خجسته غلامی، و.؛ صلاحی، ب. و محمدی، غ. (1403). تحلیل تأثیر هم­زمان برخی شاخص های دورپیوندی نیمکره شمالی بر دمای زمستانه ایران. فیزیک زمین و فضا، 50(1)، 165-184.
دوستان، ر. (1397). دورپیوند جهانی و دورپیوندهای منطقه ای ایران. فیزیک زمین و فضا، 44(3)، 625-640.
رضائیان، م.؛ محب الحجه، ح. و احمدی گیوی، ف. (1394). چرخه زندگی فازهای مثبت و منفی NAO و اثر آن بر تغییر کمیت‌های دینامیکی بر روی ایران. نشریه پژوهش‌های اقلیم­شناسی، 21 و22، 21-30.
سعادت مقدسی، ع. و آقاشریعتمداری، ز. (1404). بررسی تأثیر شاخص نوسان جنوبی (SOI) بر بارش و رطوبت نسبی نقاط مختلف کشور ایران. مجله تحقیقات آب و خاک ایران، 56(3)، 665-684.
سیدنژاد گل­خطمی، ن.؛ بذرافشان، ج.؛ نازی قمشلو، آ. و ایران­نژاد، پ. (1399). بررسی تأثیر سیگنال NAO بر بارش­های ایران با رهیافت تحلیل شبکه در ماه­های نوامبر تا آوریل 1979-2016. فیزیک زمین و فضا، 46(2)، 313-329.
فنایی، س.ح.؛ احمدی گیوی، ف. و محب­الحجه، ع. (1398). بررسی انرژتیک اثر دورپیوند شرق اطلس/غرب روسیه (EA/WR) بر منطقه مدیترانه و جنوب غرب آسیا. فیزیک زمین و فضا، 45(3)، 645-666.
مقصودی فلاح، م.؛ احمدی گیوی، ف.؛ محب­الحجه، ع. و نصراصفهانی، م.ع. (1395). اثر الگوی دورپیوند شرق اطلس-غرب روسیه (EA-WR) بر وردایی کم­بسامد وردسپهر در جنوب­غرب آسیا. مجله ژئوفیزیک ایران، 10(3)، 25-39.
ملاشریفی، آ.؛ محب­­الحجه، ع. و احمدی گیوی، ف. (1398). مطالعه اثر نوسان اطلس شمالی بر رابطه بین مسیرهای توفان اطلس شمالی و مدیترانه با استفاده از داده­های بازتحلیل NCEP/NCAR و JRA-55. فیزیک زمین و فضا، 45(2)، 423-440.
نصراصفهانی، م.ع.؛ احمدی گیوی، ف. و محب­الحجه، ع. (1389). بررسی انرژتیک ارتباط نوسان اطلس شمالی (NAO) و گردش بزرگ مقیاس وردسپهر در جنوب غرب آسیا. فیزیک زمین و فضا، 36(3)، 131-149.
نیستانی، ا. (1401). طراحی و کاربرد عملی پالایه‌های رقمی در پردازش سیگنال‌های هواشناسی. فیزیک زمین و فضا، 48(2) 361-380.
نیستانی، ا. (1402). مطالعه ارتباط بین شاخص‌های اقلیمی جهانی در مقیاس‌های زمانی مختلف، مجله ژئوفیزیک ایران،17(2)، 199-214.
Abdelkader, M., & Yerdelen, C. (2022). Hydrological drought variability and its teleconnections with climate indices. Journal of Hydrology, 605, 127290.
Alexander, M., & Scott, J. (2002). The influence of ENSO on air-sea interaction in the Atlantic. Geophysical Research Letters, 29(14), 46-1–46-4.
Alizadeh, O., & Mousavizadeh, M., (2025). Impact of ENSO on extreme precipitation in Southwest Asia. Global and Planetary Change, 244, 104645.
Andrews, M.B., Knight, J.R., Scaife, A.A., Lu, Y., Wu, T., Gray, L.J., & Schenzinger, V. (2019). Observed and simulated teleconnections between the stratospheric Quasi‐Biennial Oscillation and Northern Hemisphere winter atmospheric circulation. Journal of Geophysical Research: Atmospheres, 124, 1219–1232.
Anstey, J.A., Banyard, T.P., Butchart, N., Coy, L., Newman, P.A., Osprey, S., & Wright, C.J. (2021). Prospect of increased disruption to the QBO in a changing climate. Geophysical Research Letters, 48(12), e2021GL093058.
Anstey, J.A., & Shepherd, T.G. (2014). High-latitude influence of the Quasi-Biennial oscillation. Quarterly Journal of the Royal Meteorological Society, 140(678), 1–21.
Aondover, T. (2013). Climate Variability – Regional and Thematic Patterns. InTech.
Aravena, G., Villate, F., Iriarte, A., Uriarte, I., & Ibanez, B. (2009). Influence of the North Atlantic Oscillation (NAO) on climatic factors and estuarine water temperature on the Basque coast (Bay of Biscay): comparative analysis of three seasonal NAO indices. Continental Shelf Research, 29, 750–758.
Arrieta-Pastrana, A., Saba, M., & Alcázar, A.P. (2022). Analysis of climate variability in a time series of precipitation and temperature data: A case study in Cartagena de Indias, Colombia. Water, 14(9), 1378.
Baldwin, M.P., Gray, L.J., Dunkerton, T.J., Hamilton, K., Haynes, P.H., Randel, W.J., & Coauthors (2001). The Quasi-Biennial Oscillation. Reviews of Geophysics, 39(2), 179–229.
Cai, Q., Chen, W., Chen, S., Ma, T., & Garfinkel, C.I. (2022). Influence of the Quasi-Biennial Oscillation on the Spatial Structure of the Wintertime Arctic Oscillation. Journal of Geophysical Research: Atmospheres, 127(8). e2021JD035564.
Chartrand, J., & Pausata, F.S.R. (2020). Impacts of the North Atlantic Oscillation on winter precipitations and storm track variability in southeast Canada and the northeast United States. Weather and Climate Dynamics, 1, 731–744.
Chen, D., Lian, T., Fu, C., Cane, M.A., Tang, Y., Murtugudde, R., Song, X., Wu, Q., & Zhou, L. (2015). Influence of westerly wind bursts on El Niño diversity. Nature Geoscience, 8, 339–345.
Conte, M., Giuffrida, A., & Tedesco, S. (1989). The Mediterranean Oscillation. Impact on precipitation and hydrology in Italy. Publications of the Academy of Finland, Helsinki.
Coulibaly, P., & Burn, D.H. (2005). Spatial and temporal variability of Canadian seasonal streamflows. Journal of Climate, 18(1), 191–210.
Del Rio Amador, L., Boudreault, M., & Carozza, D.A. (2023). Global asymmetries in the influence of ENSO on flood risk based on 1,600 years of hybrid simulations. Geophysical Research Letters, 50, e2022GL102027.
Feldstein, S.B. (2000). The timescale, power spectra, and climate noise properties of teleconnection patterns. Journal of Climate, 13(24), 4430–4440.
Ghasemi, A.R., & Khalili, D. (2008). The association between regional and global atmospheric patterns and winter precipitation in Iran. Atmospheric Research, 88, 116–133.
Gaucherel, C. (2010). Analysis of ENSO interannual oscillations using non-stationary quasi-periodic statistics: a study of ENSO memory. International Journal of Climatology, 30(6), 926–934.
Ghanghermeh, A., Roshan, G.R., & Al-Yahyai, S. (2015). The influence of Atlantic-Eurasian teleconnection patterns on temperature regimes in South Caspian Sea coastal areas: a study of Golestan Province, North Iran. Pollution, 1(1), 67–83.
Gu, W., Li, C., Li, W., Zhou, W., & Chan, J.C.L. (2009). Interdecadal unstationary relationship between NAO and East China's summer precipitation patterns. Geophysical Research Letters, 36(13), L13702.
Hakam, O., Bouras, E.H., Amazirh, A., Ongoma, V., Eddamiri, S., Saidi, L., Zerouali, A., & Chehbouni, A. (2025). Influence of atmospheric and oceanic circulation patterns on precipitation variability in North Africa with a focus on Morocco. Scientific Reports, 15, 17977.
Hassan, W.U., & Nayak, M.A. (2020). Global teleconnections in droughts caused by oceanic and atmospheric circulation patterns. Environmental Research Letters, 16(1), 014007.
Huang J.P., Higuchi, K., & Shabbar, A. (1998). The relationship between the North Atlantic Oscillation and El Niño-Southern Oscillation. Geophysical Research Letters, 25(14): 2707–2710. 
Hurrell, J.W., Kushnir, Y., Ottersen, G., & Visbeck, M. (2003). The North Atlantic Oscillation: Climate significance and environmental impact. Geophysical Monograph Series, 134, 1–36.
Jamshidi Khezeli, T., Ranjbar Saadat Abadi, A., Nasr-Esfahany, M.A., Tajbakhsh Mosalman, S., & Mohebalhojeh, A.R. (2022). Autumn and Winter Extreme Precipitation Events and their Relationship with ENSO, NAO and MJO Phases over the West of Iran. Journal of the Earth and Space Physics, 47(4), 201-218.
Kahya, E. (2011). The impacts of NAO on the hydrology of the Eastern Mediterranean. Hydrological, socioeconomic and ecological impacts of the North Atlantic Oscillation in the Mediterranean region. Advances in Global Change Research, 46, 57–71.
Keellings, D., & Waylen, P. (2015). Investigating teleconnection drivers of bivariate heat waves in Florida using extreme value analysis. Climate Dynamics, 44, 3383–3391.
Kim, Y.-H. (2025). Explaining the period fluctuation of the quasi‑biennial oscillation. Atmospheric Chemistry and Physics, 25(11), 5647–5664.
Kundzewicz, Z.W., Szwed, M., & Pińskwar, I. (2019). Climate variability and floods-A global review. Water, 11(7).
Labat, D. (2008). Wavelet analysis of the annual discharge records of the world's largest rivers. Advances in Water Resources, 31(1), 109–117.
Lee, H.F., & Zhang, D.D. (2011). Relationship between NAO and drought disasters in northwestern China in the last millennium. Journal of Arid Environments, 75, 1114–1120.
Levine, A.F.Z., McPhaden, M.J., & Frierson, D.M.W. (2017). The impact of the AMO on multidecadal ENSO variability. Geophysical Research Letters, 44(8), 3877–3886.
Li, Y., Han, W., Wang, F., Zhang, L., & Duan, J. (2020). Vertical structure of the upper–Indian Ocean thermal variability. Journal of Climate, 33, 7233–7253.
Lionello, P. (Ed.). (2012). The climate of the Mediterranean region: From the past to the future. Elsevier.
Lu, H., Hitchman, M.H., Gray, L.J., Anstey, J.A., & Osprey, S.M. (2020). On the role of Rossby wave breaking in the quasi-biennial modulation of the stratospheric polar vortex during boreal winter. Quarterly Journal of the Royal Meteorological Society, 146(729), 1939–1959.
Luo, J., Luo, F., Xie, F., & Coauthors (2024). The impact of the QBO vertical structure on June extreme high temperatures in South Asia. npj Climate and Atmospheric Science, 7, 236.
Lynne, P.A., & Fuerst, W. (1994). Introductory Digital Signal Processing with Computer Applications. John Wiley & Sons Ltd., 371 pp.
McPhaden, M.J., Zebiak, S.E., & Glantz, M.H. (2006). ENSO as an integrating concept in Earth Science. Science, 314(5806), 1740–1745.
Mariani, M., Holz, A., Veblen, T.T., Williamson, G., Fletcher, M.-S., & Bowman, D.M.J.S. (2018). Climate Change Amplifications of Climate-Fire Teleconnections in the Southern Hemisphere. Geophysical Research Letters, 45(10), 5071–5081.
Match, A., & Fueglistaler, S. (2019). The buffer zone of the quasi-biennial oscillation. Journal of the Atmospheric Sciences, 76(11), 3553–3567.
McPhaden, M.J., Santoso, A., & Cai, W. (2020). El Niño Southern Oscillation in a Changing Climate. Wiley: Hoboken, NJ, USA.
Mezzina, B., García-Serrano, J., Bladé, I., & Kucharski, F. (2020). Dynamics of the ENSO teleconnection and NAO variability in the North Atlantic–European late winter. Journal of Climate, 33(3), 937–955.
Mitchell, J.M., (1976). An overview of climatic variability and its causal mechanisms. Quaternary Research, 6, 481–493.
Moon, J.Y., Wang, B., Lee, S.S., & Ha, K.J. (2018). An intraseasonal genesis potential index for tropical cyclones during Northern Hemisphere summer. Journal of Climate, 31(22), 9055– 9071.
Naizghi, M.S., & Ouarda, T.B.M.J. (2017). Teleconnections and analysis of long-term wind speed variability in the UAE. International Journal of Climatology, 37(1), 230–248.
Nalley, D., Adamowskia, J., Biswas, A., Gharabaghi, B., & Hu, W. (2019). A multiscale and multivariate analysis of precipitation and streamflow variability in relation to ENSO, NAO and PDO. Journal of Hydrology, 574, 288-307.
Nazemosadat, M.J., & Ghasemi, A.R. (2004). Quantifying the ENSO-related shifts in the intensity and probability of drought and wet periods in Iran. Journal of Climate, 17, 4005–4018.
Neyestani, A., Karami, K., & Gholami, S. (2022). Exploring the possible linkage between the precipitation and temperature over Iran and their association with the large-scale circulations: cumulative spectral power and wavelet coherence approaches. Atmospheric Research, 274, 106187.
Niu, J., & Chen, J. (2016). A wavelet perspective on variabilities of hydrological processes in conjunction with geomorphic analysis over the Pearl River basin in South China. Journal of Hydrology, 542, 392–409.
Pahlavan, H.A., Fu, Q., Wallace, J.M., & Kiladis, G.N. (2021). Revisiting the quasi-biennial oscillation as seen in ERA5. Part I: Description and momentum budget. Journal of the Atmospheric Sciences, 78(3), 673–691.
Palutikof, J.P. (2003). Analysis of Mediterranean climate data: measured and modelled. In: Bolle, H.J. (ed): Mediterranean climate: Variability and trends. Springer-Verlag, Berlin.
Perivalsky, V. (2021). Time Series Analysis in Climatology and Related Sciences. Springer International Publishing.
Raymond, W., & Garder, A. (1991). A review of recursive and implicit filters. Monthly Weather Review, 119, 477–495.
Rivière, G., & Drouard, M. (2015). Understanding the contrasting North Atlantic Oscillation anomalies of the winters of 2010 and 2014. Geophysical Research Letters, 42(15), 6353–6360.
Roushangar, K., Alizadeh, F., & Adamowski, J. (2018). Exploring the effects of climatic variables on monthly precipitation variation using a continuous wavelet-based multiscale entropy approach. Environmental Research, 165, 176–192.
Santolaria-Otín, M., & García-Serrano, J. (2024). Internal variability of the winter North Atlantic Oscillation longitudinal displacements. npj Climate and Atmospheric Science, 7, 291.
Şarlak, N., Kahya, E., & Bég, O.A. (2009). Critical drought analysis: case study of Göksu River, Turkey and North Atlantic Oscillation influences. Journal of Hydrologic Engineering, 14(8), 795–802.
Steirou, E., Gerlitz, L., Apel, H., & Merz, B. (2017). Links between large-scale circulation patterns and streamflow in Central Europe: a review. Journal of Hydrology, 549, 484–500.
Sweeney, A., Fu, Q., Pahlavan, H.A., & Haynes, P. (2023). Seasonality of the QBO Impact on Equatorial Clouds. Journal of Geophysical Research: Atmospheres, 128(7), e2022JD037737.
Tabari, H., Hosseinzadeh Talaee, P., Shifteh Some, B., & Willems, P. (2014). Possible influences of North Atlantic Oscillation on winter reference evapotranspiration in Iran. Global and Planetary Change, 117, 28-39
Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A., Cobb, K.M., Lengaigne, M., McPhaden, M.J., Stuecker, M.F., and Coauthors (2018). El Niño–southern oscillation complexity. Nature, 559, 535–545.
Ustaoglu, B., & Karaca, M. (2014). The effects of climate change on spatiotemporal changes of hazelnut (Corylus Avellana) cultivation areas in the Black Sea Region, Turkey. Applied Ecology and Environmental Research, 12, 309–324.
von der Heydt, A.S., Ashwin, P., Camp, C.D., Crucifix, M., Dijkstra, H.A., Ditlevsen, P., & Lenton, T.M. (2021). Quantification and interpretation of the climate variability record. Global and Planetary Change, 197, 103399.
Walker, G.T. (1920). Probable amount of monsoon rainfall in 1920. Monthly Weather Review, 48, 415.
Walker, G.T. (1925). Correlation in seasonal variations of weather-A future study of world weather. Monthly Weather Review, 53(6), 252-254.
Wallace, J.M., & Gutzler, D.S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review, 109, 784–812.
Wang, C. (2019). Three-ocean interactions and climate variability: A review and perspective. Climate Dynamics, 53, 5119–5136.
Woollings, T., Hannachi, A., & Hoskins, B. (2010). Variability of the North Atlantic eddy‑driven jet stream. Quarterly Journal of the Royal Meteorological Society, 136(649), 856–868.
Xie, N., Sun, Y., & Gao, M. (2020). The influence of five teleconnection patterns on wintertime extratropical cyclones over northwest Pacific. Atmosphere, 11(11), 1248.
Yang, S., Li, Z., Yu, J.-Y., Hu, X., Dong, W., & He, S. (2018). El Niño–Southern Oscillation and its impact in the changing climate. National Science Review, 5(6), 840–857.