The role of the Hadley cell in the general circulation of the atmosphere and the formation of a subtropical anticyclone over Southwest Asia

Document Type : Research Article

Authors

Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.

Abstract

Subtropical high pressures play a very important role in the climate of the whole earth, especially in the Southwest Asia region. These high pressures are influential in determining the climatic conditions more than any other atmospheric component. In this research, using NCEP/NCAR reanalysis data with a horizontal resolution of 2.5 degrees during the 1991–2020 period, the impacts of various non-local factors on the formation and evolution of high pressures in the subtropical region of Southwest Asia have been investigated. Specifically, one of the main goals is to find an answer to the question: why, contrary to the initial physical expectation, despite the existence of a more intense meridional pressure gradient in the winter season, are summer high pressures in the Northern Hemisphere stronger than their winter counterparts. For this purpose, first, by using quantities such as sea level pressure, geopotential height of different pressure levels, as well as meridional and vertical components of wind speed, the state of Hadley circulation and consequently the intensity of high pressures in winter and summer during the study period have been examined and compared. In the second step of the research, according to the results of previous researches on the prominent role of the South and Southeast Asia monsoons in the formation and strengthening of anticyclones and summer subtropical high pressures, this issue has been assessed in the Southwest Asia region.
Results showed that the Hadley cell in the winter hemisphere has a greater intensity and extent than the summer hemisphere, and the subsidence caused by the Hadley mechanism in the lower levels of the winter hemisphere and Southwest Asia is considered the main factor in the formation of low-level subtropical anticyclones in these regions. Meanwhile, the powerful high-level anticyclones in the summer of Southwest Asia and the Asian region are not compatible with the weak summer Hadley cell in these regions. Among the other notable findings are the importance of Asian monsoon circulation in the formation of east-west zonal circulations in the upper levels of the Asian region and the role of local circulations induced by the high plateaus of Iran, Arabia, and Tibet to explain the summer circulation of Southwest Asia. The results also showed that the winds originating from the Asian seasonal region are responsible for the background flow of north-west upper levels in summer from East to West Asia, which can describe the formation of downward mass fluxes associated with the zonal and meridional parts of circulation in West Asia and thus explain the existence of upper levels Southwest Asia anticyclones. The high plateaus of Iran, Zagros causes upward motions and local circulations below downward flow from upper levels. The mountain effects as local enhancers of downward flux of upper background flow have also been considered.

Keywords

Main Subjects


پرهیزکار، د. و احمدی ‌گیوی، ف. (1390). مطالعه ارتباط انسو (ENSO) با نوسان سالانه واچرخند جنب­حاره­ای بر روی خاورمیانه در یک دوره سی ساله. نشریه پژوهش­های اقلیم­شناسی، 3(9)، 68-55.
مفیدی، ع. و زرین، آ. (1391). بررسی ماهیت، ساختار و وردایی زمانی گردش بزرگ­مقیاس جو تابستانه بر روی جنوب­غرب آسیا. نشریه پژوهش­های اقلیم­شناسی، 3(11)، 40-15.
زرین، آ. و مفیدی، ع. (1390). "بررسی یک نظریه" آیا پرفشار جنب­حاره­ای تابستانه بر روی ایران زبانه­ای از پرفشار جنب­حاره­ای آزورز است؟ یازدهمین کنگره انجمن جغرافی­دانان ایران، ۲۴ و ۲۵ شهریورماه ۱۳۹۰، دانشگاه شهید بهشتی.
قائمی، ‏ه.؛ زرین، ‏آ.؛ ‏آزادی،‏ م. و ‏فرج‌زاده‌اصل، م. (1388). تحلیل الگوی فضایی پرفشار جنب­حاره بر روی آسیا و آفریقا. فصل‌نامه مدرس علوم انسانی، 13(1)، 245-219.
گرمسیری، ع. ا.؛ عزیزی، ق.؛ محمدی، ح. و کریمی احمدآباد، م. (1398). تحلیلی بر واچرخندهای جنب‌حاره در ترازهای میانی جو از شمال آفریقا تا ایران، نشریه هواشناسی و علوم جو. 3(2)، 147-129.
Bergeron, T. (1930). Richtlinien einer dynamischen Klimatologie. Meteorologische Zeitschrift, 47(7), 246-262.
Cherchi, A., Ambrizzi, T., Behera, S., Vasques, A. C., Morioka, Y., & Zhou, T. (2018). The response of subtropical highs to climate change. Current Climate Change Reports, 4(4), 371–382.
Gill, A. E. (1980). Some simple solutions for heat-induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106(449), 447–462.
He, C., Wu, B., Zou, L., & Zhou, T. (2017). Responses of the summertime subtropical anticyclones to global warming. Journal of Climate, 30(16), 6465–6479.
He, C., & Zhou, T. (2022) Distinct responses of North Pacific and North Atlantic summertime subtropical anticyclones to global warming. Journal of Climate, 35(24), 8117–8132.
He, C., & Zhou, W. (2020). Different enhancement of the East Asian summer monsoon under global warming and interglacial epochs simulated by CMIP6 models: role of the subtropical high. Journal of Climate, 33(22), 9721–9733.
Held, I. M., & Hou, A. Y. (1980). Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. Journal of the Atmospheric Sciences, 37(3), 515–533.
Holton, J. R. (2004). An Introduction to Dynamic Meteorology. Fourth edition, Elsevier, Academic Press, 553 pp.
Hoskins, B. (1996). On the existence and strength of the summer subtropical anticyclones. Bernhard Haurwitz memorial lecture. Bulletin of the American Meteorological Society, 77, 1287–1292.
Huang, Z., Zhang, W., Geng, X., & Jin, F. (2020). Recent shift in the state of the Western Pacific subtropical high due to ENSO change. Journal of Climate, 33(1), 229–241.
James, I. N. (1994). Introduction to Circulating Atmospheres. Cambridge University Press, New York, 422 pp.
Lindzen, R. S., & Hou, A. Y. (1988). Hadley circulations for zonally averaged heating centred off the equator. Journal of the Atmospheric Sciences, 45(17), 2416–2427.
Liu, Y., & Wu, G. (2004). Progress in the study on the formation of the summertime subtropical anticyclone. Advances in Atmospheric Sciences, 21(3) 322–342.
Lorenz, E. N. (1967). The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization, Geneva.
Lyu, K., Yu, J. Y., & Paek, H. (2017). The influences of the Atlantic multidecadal oscillation on the mean strength of the North Pacific subtropical high during boreal winter. Journal of Climate, 30(1), 411–426.
Mahlobo, D. D., Ndarana, T., Grab, S., & Engelbrecht, F. (2018). Integrated climatology and trends in the subtropical Hadley cell, sunshine duration and cloud cover over South Africa. International Journal of Climatology, 39(4), 1805-1821.
Manney, G. L., Santee, M. L., Lawrence, Z. D., Wargan, K., & Schwartz, M. J. (2021). A moments view of climatology and variability of the Asian summer monsoon anticyclone. Journal of Climate, 34(19), 7821–7841.
Masako, T., & Tanaka, H. L. (2007). Intensities of Hadley, Walker, and Monsoon circulations compared in the upper and lower troposphere. Journal of the Korean Meteorological Society, 43(3), 239-251.
Miyamoto, A., Nakamura, H., Miyasaka, T., Kosaka, Y., Taguchi, B., & Nishii, K. (2022). Maintenance mechanisms of the wintertime subtropical high over the south Indian Ocean. Journal of Climate, 35(10), 2989–3005.
Nguyen, H., Hendon, H. H., Lim, E. P., Boschat, G., Maloney, E., & Timbal, B. (2017). Variability of the extent of the Hadley circulation in the Southern Hemisphere: a regional perspective. Climate Dynamics, 50, 29–142.
Peixoto, J. P. & Oort, A. H. (1992). Physics of Climate. Springer-Verlag, 215 pp.
Pepler, A. (2023). Projections of synoptic anticyclones for the twenty‑first century. Climate Dynamics, 61, 3271–3287.
Polvani, L. M., Waugh, D. W., Correa, G. J. P., & Son, S.-W. (2011). Stratospheric ozone depletion: The main driver of the twentieth century atmospheric circulation changes in the Southern Hemisphere. Journal of Climate, 24(3), 795–812.
Rodwell, M., & Hoskins, B. (1996). Monsoons and the dynamics of deserts. Quarterly Journal of the Royal Meteorological Society, 122(534), 1385–1404.
Rodwell, M., & Hoskins, B. (2001). Subtropical anticyclones and summer monsoons. Journal of Climate, 14(15), 3192–3211.
Schwendike, J., Govekar, P., Reeder, M. J., Wardle, R., Berry, G. J., & Jakob, C. (2014). Local partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations. Journal of Geophysical Research: Atmospheres, 119(3), 1322–1339.
Siu, L. W., & Bowman, K. P. (2019). Forcing of the upper-tropospheric monsoon anticyclones. Journal of of the Atmospheric Sciences, 76(7), 1937–1954.
Zaitchik, B. F., Evans, J. P., & Smith, R. B. (2007). Regional impact of an elevated heat source; the Zagros Plateau of Iran. Journal of Climate, 20(16), 4133–4146.