انصاری، ه. و معروفی، ص. (1396). برآورد آب معادل برف با استفاده از دادههای سنجنده AMSR-E و مدل GLDAS (مطالعه موردی: حوضههای شمالغرب ایران). آب و خاک، 31(5)، 1497-1510.
خدامرادپور م.؛ ایران نژاد پ.؛ اخوان س. و بابایی خ. (1396). ارزیابی مدل برف طرحواره سطح NOAH-MP جفتشده با مدل منطقهای WRF در بارشهای سنگین برف در شمال و غرب ایران. مجله ژئوفیزیک ایران، 11(4)، 146-163.
مجیدی کرهرودی، ف.؛ قرایلو، م. و ثابت قدم، س. (1403). ارزیابی عملکرد بانک دادههای بازتحلیل ERA5 و MERRA2 در تخمین میزان عمق برف در شمال غرب ایران. فیزیک زمین و فضا، 50 (1)، 251-263.
Alonso-González, E., López-Moreno, J. I., Gascoin, S., García-Valdecasas Ojeda, M., Sanmiguel-Vallelado, A., Navarro-Serrano, F., Revuelto, J., Ceballos, A., Esteban-Parra, M. J., & Essery, R. (2018). Daily gridded datasets of snow depth and snow water equivalent for the Iberian Peninsula from 1980 to 2014. Earth System Science Data, 10(1), 303-315.
Anderson, E. A. (1976). A point energy and mass balance model of a snow cover. Stanford University.
Bell, V. A., Kay, A. L., Davies, H. N., & Jones, R. G. (2016). An assessment of the possible impacts of climate change on snow and peak river flows across Britain. Climatic Change, 136, 539-553.
Cohen, J., & Rind, D. (1991). The effect of snow cover on the climate. Journal of Climate, 4(7), 689-706.
Gao, L., Zhang, L., Shen, Y., Zhang, Y., Ai, M., & Zhang, W. (2021). Modeling snow depth and snow water equivalent distribution and variation characteristics in the Irtysh River Basin, China. Applied Sciences, 11(18), 8365.
Havens, S., Marks, D., FitzGerald, K., Masarik, M., Flores, A. N., Kormos, P., & Hedrick, A. (2019). Approximating input data to a snowmelt model using weather research and forecasting model outputs in lieu of meteorological measurements. Journal of Hydrometeorology, 20(5), 847-862.
Henderson, G. R., Peings, Y., Furtado, J. C., & Kushner, P. J. (2018). Snow–atmosphere coupling in the Northern Hemisphere. Nature Climate Change, 8(11), 954-963.
Liu, L., Ma, Y., Menenti, M., Zhang, X., & Ma, W. (2019). Evaluation of WRF modeling in relation to different land surface schemes and initial and boundary conditions: A snow event simulation over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 124(1), 209-226.
Jordan, R. E. (1991). A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM. 89.
Mudryk, L., Brown, R., Derksen, C., Luojus, K., Decharme, B., & Helfrich, S. (2019). Terrestrial snow cover.
Mudryk, L. R., Derksen, C., Kushner, P. J., & Brown, R. (2015). Characterization of Northern Hemisphere snow water equivalent datasets, 1981–2010. Journal of Climate, 28(20), 8037-8051.
Mott, R., Daniels, M., & Lehning, M. (2015). Atmospheric flow development and associated changes in turbulent sensible heat flux over a patchy mountain snow cover. Journal of Hydrometeorology, 16(3), 1315-1340.
Pan, X., Li, X., Cheng, G., Chen, R., & Hsu, K. (2017). Impact analysis of climate change on snow over a complex mountainous region using weather research and forecast model (wrf) simulation and moderate resolution imaging spectroradiometer data (modis)-terra fractional snow cover products. Remote Sensing, 9(8), 774.
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., & Miller, J. R. (2015). Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5 (5), 424–430.
Poschlod, B., & Daloz, A. S. (2024). Snow depth in high-resolution regional climate model simulations over southern Germany–suitable for extremes and impact-related research?. The Cryosphere, 18(4), 1959-1981.
Rasmussen, R., Liu, C., Ikeda, K., Gochis, D., Yates, D., Chen, F., Tewari, M., Barlage, M., Dudhia, J., Yu, W., & Miller, K. (2011). High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. Journal of Climate, 24(12), 3015-3048.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X. Y., Wang, W., & Powers, J. G. (2008). A description of the advanced research WRF version 3. NCAR technical note, 475(125), 10-5065.
Shi, J. J., Tao, W. K., Matsui, T., Cifelli, R., Hou, A., Lang, S., Tokay, A., Wang, N. Y., Peters-Lidard, C., Skofronick-Jackson, G., & Rutledge, S. (2010). WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. Journal of Applied Meteorology and Climatology, 49(11), 2246-2266.
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of geophysical research: atmospheres, 106(D7), 7183-7192.
Tomasi, E., Giovannini, L., Zardi, D., & de Franceschi, M. (2017). Optimization of Noah and Noah_MP WRF land surface schemes in snow-melting conditions over complex terrain. Monthly Weather Review, 145(12), 4727-4745.
Van Pelt, W. J., Kohler, J., Liston, G. E., Hagen, J. O., Luks, B., Reijmer, C. H., & Pohjola, V. A. (2016). Multidecadal climate and seasonal snow conditions in Svalbard. Journal of Geophysical Research: Earth Surface, 121(11), 2100-2117.
Wang, W. (2022). Forecasting convection with a “scale-aware” Tiedtke cumulus parameterization scheme at kilometer scales. Weather and Forecasting, 37(8), 1491-1507.
Wrzesien, M. L., Durand, M. T., Pavelsky, T. M., Howat, I. M., Margulis, S. A., & Huning, L. S. (2017). Comparison of methods to estimate snow water equivalent at the mountain range scale: A case study of the California Sierra Nevada. Journal of Hydrometeorology, 18(4), 1101-1119.
Wu, X., Shen, Y., Wang, N., Pan, X., Zhang, W., He, J., & Wang, G. (2016). Coupling the WRF model with a temperature index model based on remote sensing for snowmelt simulations in a river basin in the Altay Mountains, north‐west China. Hydrological Processes, 30(21), 3967-3977.
Yongjiu, D., & Qingcun, Z. (1997). A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments. Advances in Atmospheric Sciences, 14(4), 433-460.
Zhang, C., Wang, Y., & Hamilton, K. (2011). Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Monthly Weather Review, 139(11), 3489-3513.