تعیین مرز آنومالی‌های میدان گرانی با استفاده از گرادیان کل افقی نرمال شده (NTHD)

نویسندگان

1 دانشجوی کارشناسی ارشد موسسه ژئوفیزیک دانشگاه تهران

2 عضو هیات علمی موسسه ژئوفیزیک دانشگاه تهران

چکیده

به دلیل اهمیت زیاد تعیین مرزهای آنومالی در تفسیر نقشه‌های گرانی و مغناطیس، روش‌های گوناگونی برای تعیین مرز آنومالی‌ها وجود دارند. برخی از این روش‌ها عبارت‌اند از فیلتر زاویه تیلت (T)، فیلتر مشتق افقی کل زاویه تیلت (THDT)، فیلتر تتا، فیلتر TDX، فیلتر زاویه تیلیت هذلولوی (HTA) و غیره. فیلترهای فاز محلی قابلیت‌های زیادی دارند اما با یک ضعف عمده و آن کاهش دقت آنها در رویارویی با منابع عمیق است. این تحقیق توانایی روش گرادیان کل افقی نرمال شده (NTHD) را در تعیین مرز آنومالی‌ها بررسی و آن را با سایر روش‌های مرسوم مقایسه می‌نماید.
به منظور بررسی کارایی فیلتر NTHD، این فیلتر بر روی مدل مصنوعی مکعب اعمال گردید و برای بررسی بیشتر، به مدل مکعب مصنوعی نویز گوسین اضافه گردید و سپس این فیلتر بر روی داده‌های حاوی نویز اعمال که نتایج به دست آمده در هر دو مورد نشان از کارایی بالای این فیلتر را دارند. علاوه بر این، فیلترNTHD و دیگر فیلترهای ذکر شده بر روی مدل‌های مصنوعی مکعبی ترکیبی با عمق-های مختلف و در مجاورت هم، به کار بسته شد که تقریبا تمام روش‌ها در تعیین مرز آنومالی‌ها سطحی موفق عمل کردند اما فیلتر NTHD در مقایسه با فیلترهای دیگر جزئیات بیشتری را در دسترس قرار می‌دهد به طوری که در تعیین مرز آنومالی‌های عمیق قرار گرفته در مجاورت آنومالی‌های سطحی، بهبود واضحی نشان می‌دهد. نهایتا فیلتر NTHD بر روی داده‌های واقعی توده معدنی موبرون (Mobrun) کانادا اعمال گردید که نتایج آن با مطالعات قبلی تطابق خوبی را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Edge Detection of Gravity Anomalies with Normalized Total Horizontal Derivative (NTHD)

نویسندگان [English]

  • Vahid Entezar Saadat 1
  • Seyed Hani Motavalli Anbaran 2
1
2
چکیده [English]

There are several varieties of edge detection method. Edge detection and edge enhancement techniques play an essential role in interpreting potential field data. Some of common methods are: Tilt angle filter (TA), Total horizontal derivative of tilt angle filter (THDT), Theta filter, TDX filter, Hyperbolic tilt angle (HTA). These filters maximum values are when facing with the edge of an anomalous mass, and their minimum values are above the anomalous mass except tilt angle filter which is positive when over the source and passes through zero when over or near the edge. Local phase filters (edge enhancement methods) are based on the phase variation of the derivative quantities.
The mentioned filters have different advantages like flexibility in making new filters but a universal disadvantage of these methods is that they cannot display the large and small amplitude edges simultaneously. In this paper the ability of normalized total horizontal derivative (NTHD) method is shown and it compared with the other methods. The NTHD method is based on the ratio of the horizontal derivative to the maximum of nearby values which are in an arbitrary window. The maxima of the NTHD method are located on the edges of causative sources.
To determine the ability of NTHD method, it is applied on an artificial rectangular prism which is created with Matlab software. In order to find the stability of the method when facing a noisy data, a Gaussian noise created with randn command in Matlab area and added to the artificially rectangular prism and then the NTHD method applied on it. To evaluate the capability of this method with prevalent edge detection methods, a Matlab code has written and the numbered edge detection filters were applied on several artificially rectangular bodies which are in shallow and deep depths. The results showed that almost all filters delineated edges of shallow anomalies successfully but when they facing with the deeper anomalies their ability rising down and cannot detect the edges precisely. The excellence of the NTHD method in recognition of source edges is due to the fact that it can make the strong and weak amplitude edges visible simultaneously and can bring out more details. The edge detection technique (NTHD) was further applied on the Mobrun gravity anomaly which digitized from Grant and West (1965). The gravity data of Mobrun ore body consist of thirteen profiles. The distance between profiles is 60 meters and in each profile, data have space of 30 meters. In order to reduce the existent noise in these data, we upward data for a distance of 10 meters then we apply NTHD filter with a 1×1 window. The result of applying the NTHD method on Mobrun ore body are in concord with the prevalent results of exploration bore data and precisely detects the edges of anomaly. In order to examine the results of edge detection, we use the data of borehole that they dugout along the AB profile. Among the boreholes the BH2 borehole is near to the edge of Mobrun ore body and is in concord with the edge detection results of NTHD method.

کلیدواژه‌ها [English]

  • Edge detection of anomalies
  • NTHD filter
  • Local phase filters
  • gravity anomalies
  • Total horizontal derivative
  • Mobrun ore body of Canada
Abedi, M., Afshar, A., Ardestani, V. E. and Norouzi, Gh., 2014, Comparison of derivative-based methods by normalized standard deviation approach for edge detection of gravity anomalies, J. of the Earth and Space Physics, 40(3), 2014, 13-21.
Blakely, R. J., 1995, Potential theory in gravity and magnetic applications, Cambridge University Press.
Cooper G. R. J. and Cowan D. R., 2008, Edge enhancement of potential-field data using normalized statistics, Geophysics, 73(3), (H1-H4).
Cooper, G. R. J. and Cowan, D. R., 2006, Enhancing potential field data filters based on the local phase, Computer & Geosciences, 32, 1585-1591.
Cooper, G. R. J. and Cowan, D. R., 2004, Filtering using variable order vertical derivatives, Computer and Geosciences, 30, 455-459.
Cowan, D. R. and Cooper, G. R. J., 2005, Separation filtering using fractional order derivatives, Exp. Geophys, 36(4), 393-396.
 
Grant, F. S. and West, G. F., 1965, Interpretation theory in applied geophysics, McGraw-Hill.
Klingele, E. E., Marson, I. and Kahle, H. G., 1991, Automatic interpretation of gravity gradiometric data in two dimensions: vertical gradient, Geophysical Prospecting, 39, 407-434.
Ma, G. and Li, L., 2012, Edge detection in potential fields with the normalized total horizontal derivative, Computers & Geosciences, 41, 83-87.
Nabighian, M. N., 1974, Additional comments on the analytic signal of two dimensional magnetic bodies with polygonal cross section, Geophysics, 39(1), 85-92.
Plouff, D., 1975, derivation of formulas and FORTRAN program to compute gravity anomalies of prisms, National Technical Information Service, PB, 243-526, U. S. Department of Commerce.
Xu, M., Heng, C. and Huan, F., 2015, Edge detection in the potential field using the correlation coefficients of multidirectional standard deviations, Applied Geophysics, 12(1), 23-34.