شبیه‌سازی توزیع ذرات گردوخاک در مقیاس جهانی و تاثیر آنها بر شارش‌های‌ تابشی با استفاده از مدل WRF/Chem

نویسندگان

1 موسسه ژئوفیزیک

2 هیئت علمی موسسه ژئوفیزیک

چکیده

در مطالعه حاضر توزیع ذرات گردوخاک و تاثیر مستقیم‌شان بر شارش‌های تابشی در مقیاس جهانی با استفاده از مدل عددی WRF-Chem، جفت شده با طرحواره گسیل گردوخاک GOCART، برای ماه‌های ژانویه و ژوئیه 2011 شبیه‌سازی شده است. دو شبیه‌سازی اجرا گردیده است: پیکربندی بدون ذرات گردوخاک و پیکربندی که شامل ذرات گردوخاک و تاثیر مستقیم‌شان بر تراز تابشی است. اختلاف نتایج دو آزمایش عمق نوری ذرات گردوخاک و پریشدگی تابش‌ طول موج کوتاه و بلند توسط ذرات گردوخاک را به‌دست می‌دهد. میانگین جهانی عمق نوری ذرات گردوخاک در μm 55/0 برای ماه‌های ژانویه و ژوئیه به‌ترتیب 046/0 و 069/0 برآورد شد که بیانگر بیشتر بودن ذرات گردوخاک معلق در جو در ماه ژوئیه نسبت به ژانویه می‌باشد. میانگین جهانی پریشیدگی تابش طول موج کوتاه توسط ذرات معلق گردوخاک و در شرایط آسمان صاف در سقف جوّ و سطح زمین در ژانویه به‌ترتیب Wm-284/1- و Wm-207/2- و در ژوئیه بهترتیب Wm-238/2- و Wm-214/4- محاسبه گردید. پریشیدگی تابش طول موج بلند مثبت، و در ژانویه Wm-234/1 در سقف جو ّو Wm-282/0 در سطح زمین و در ژوئیه Wm-286/0 در سقف جوّ و Wm-2 02/1 در سطح زمین برآورد شد. این مقادیر نشان می‌دهد که پریشیدگی تابش خالص توسط ذرات گردوخاک در سطح زمین و سقف جوّ منفی است، یعنی این ذرات باعث سرمایش سامانه زمین- جوّ می‌شوند. پریشیدگی تابشی منفی در سطح زمین ناشی از خاموشی (پراکنش و جذب) تابش خورشیدی ورودی توسط ذرات گردوخاک و پریشیدگی تابشی منفی در سقف جوّ عمدتا ناشی از افزایش طول موج کوتاه خروجی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Distribution of mineral dust on the global scale and its impacts on radiation fluxes as simulated by the WRF/Chem model

چکیده [English]

Mineral dust is produced from both natural and anthropogenic sources. Dust aerosols can be transported over long distances in the atmosphere. They reduce the incident shortwave radiation to the surface by absorbing and scattering the solar radiation; thereby leading to a cooling effect at the surface and lower tropospheric temperature. On the other hand, by absorption and re-emission of longwave radiation, they increase the net surface longwave radiation at the surface. This direct interaction of dust aerosols with shortwave and longwave radiation, known as the direct radiative impact, plays a key role in the radiation budget of the atmosphere. Although mineral dust is one of the most significant aerosols in the atmosphere, according to the Intergovernmental Panel on Climate Change (IPCC, 2007), uncertainty in its spatial distribution and radiative forcing, remains as a great challenge in climate studies. In the present study, the Weather Research and Forecasting with Chemistry (WRF-Chem) regional model is used to simulate distribution of mineral dust and its impacts on radiation fluxes on the global scale. The model was executed using 335 × 168 horizontal grid points with a horizontal spacing of 120 km, and 28 vertical levels for January and July 2011. The National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) re-analysis data were used as meteorological initial conditions. The GOCART (Goddard Global Ozone Chemistry Aerosol Radiation and Transport) simple aerosol scheme was used for the simulation of dust emission and airborne dust distribution. Two experiments were conducted: the control simulation with no dust; and the interactive simulation for which dust aerosols feedback to the atmosphere. Differences between these two simulations indicate the perturbation of radiation by dust. Results indicate that the concentration of dust particles is generally much higher in the Northern Hemisphere than the Southern Hemisphere. The main sources of dust are located over the Sahara and Sahel, the Middle East, and East Asia, especially the Gobi Desert of China and Mongolia. The Eyre Basin in central Australia was identified as the most important source of dust in the Southern Hemisphere. Over the Sahara, dust emission was most intense in January, but substantially decreased in July. In contrast, in response to drier soils and higher wind speeds, sources of dust in the Middle East were more active in July than January. The Gobi Desert was also found to have much more dust activity in January than July, primarily due to stronger wind speeds during this month. On the global scale, monthly-averaged dust optical depth (DOD) was estimated to be 0.046 and 0.069 in January and July, respectively. Globally, perturbation of shortwave and longwave radiation by dust at the top of the atmosphere (TOA) was estimated to be -1.84 and 1.34 W m-2 in January, and -2.38 and 0.68 W m-2 in July, respectively. At the surface, it was estimated that perturbation of shortwave and longwave radiation to be -2.07 and 0.82 W m-2 in January, and -4.14 and 1.02 W m-2 in July, respectively. It was also found that perturbation of radiation is larger closer to the sources of dust. For instance, the perturbation of shortwave radiation exceeds -20 W m-2 over the Sahara. Globally, we identified that dust has a negative effect on the shortwave, but a positive effect on the longwave radiation at the surface. However, in snow covered regions (such as over the Tibetan Plateau, northern parts of the Scandinavia and the United States in January) deposition of dust on the surface increases the net shortwave radiation reaching the surface (due to reduction of surface albedo) and decreases net longwave radiation by increasing outgoing longwave radiation from the surface.
 

کلیدواژه‌ها [English]

  • Mineral Dust
  • Dust Optical Depth
  • Dust Emission
  • Perturbation of Radiation
  • WRF_Chem
مشایخی، ر.، ایران‌نژاد، پ. و علی‌اکبری بیدختی، ع. ع.، 1388، شبیه‌سازی هواویزها و واداشت‌های تابشی ناشی از آنها با استفاده از مدل جفت‌شده هواویز HAMو مدل میان‌مقیاس پیش‌بینی وضع هوا WRF، م. فیزیک زمین و فضا، 31(2)، 107-91.
 
Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V. and Welton, E. J., 2000, Reduction of tropical cloudiness by soot, Science, 288(5468), 1042–1047.
Alizadeh Choobari, O., Zawar-Reza, P. and Sturman, A., 2012, Atmospheric forcing of the threedimensional distribution of dust particles over Australia: a case study, J. Geophys. Res., 117, D11, 206.
Alizadeh Choobari, O., Zawar-Reza, P. and Sturman, A., 2013, Simulation of the spatial distribution of mineral dust and its direct radiative forcing over Australia, Tellus B, 65,19856.
Alizadeh Choobari, O., Sturman, A. and Zawar-Reza, P., 2015, Global distribution of mineral dust and its impact on radiative fluxes as simulated by WRF-Chem, Meteorol. Atmos. Phys., doi: 10.1007/s00703-015-0390-4.
Chen, Y. S., Sheen, P. C., Chen, E. R., Liu, Y. K., Wu, T. N. and Yang, C. Y., 2004, Effects of Asian dust storm events on daily mortality in Taipei, Taiwan. Environ. Res., 95, 151-155.
Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M.D., Tanré, D. and Slutsker, I., 2002, Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59(3), 590-608.
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G. and Tarpley, J. D., 2003,Implementation of Noah land surface model advances in the National Centers for Environmental Prediction, Operational mesoscale Eta model, J. Geophys. Res., 108(D22), 8851.
Ferek, R. J., Liu, Q. F., Albrecht, B. A., Babb, D., Garrett, T., Hobbs, P. V., Strader, S., Johnson, D., Taylor, J. P., Nielsen K., Ackerman A. S. and Kogan Y., 2000, Drizzle suppression in ship tracks, J. Atmos. Sci., 57(16), 2707-2728
Fung, I. Y., Meyn, S. K., Tegen, I., Doney, S. C., John, J. G. and Bishop, J. K. B., 2000, Iron supply and demand in the upper ocean, Global Biogeochem. Cycl., 14(1), 281-295.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O. and Lin, S. J., 2001, Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106(D17):20255-20273.
Ginoux, P., Prospero, J., Torres, O. and Chin, M., 2004, Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation., Environ. Model. Software, 19(2), 113–128.
Ginoux, P. A., Prospero, J. M., Gill, T. E., Hsu, C. and Zhao, M., 2012, Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products, Rev. Geophys., 50, RG3005.
Grell, G. A., 1993, Prognostic evaluation of assumptions used by cumulus parameterizations, Mon. Wea. Rev., 121(3), 764-787.
Griffin, D. W., Kellogg, C. A., Garrison, V. H. and Shinn, E. A., 2002, The global transport of dust, American Scientist, 90(3), 228.
Gunn, R. and Phillips, B. B., 1957, An experimental investigation of the effect of air pollution on the initiation of rain, J. Meteorol., 14(3), 272-280.
Hansen, J., Sato, M. and Ruedy, R., 1997, Radiative forcing and climate response, J. Geophys. Res., 102(D6), 6831-6864.
Haywood, J. M., Allan, R. P., Culverwell, I., Slingo, T., Milton, S., Edwards, J. and Clerbaux, N., 2005, Can desert dust explain the outgoing long wave radiation anomaly over the Sahara during July 2003. J. Geophys. Res., 110, D05105, doi:10.1029/2004JD005232
Hong, S. Y., 2010, A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon, Q. J. R. Meteorol. Soc., 136(651), 1481–1496IPCC, 2007, Climate Change 2007- The Physical Science Basis, Contribution of the Working Group I to the Forth Assessment Report Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M. B., Tignore, M. and Miller, H. L., Cambridge Univ. Press, Cambridge United Kingdom and New York, NY, USA.
Jickells, T. D., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., Torres, R., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W. and Duce, R. A., 2005, Global iron connections between desert dust, ocean biogeochemistry, and climate, Science, 308(5718), 67-71.
Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A. and Rudich, Y., 2005, Aerosol invigoration and restructuring of Atlantic convective clouds, Geophys. Res. Lett., 32(L14), 828.
Koren, I., Remer, L., Altaratz, O., Martins, J. and Davidi, A., 2010, Aerosol induced changes of convective cloud anvils produce strong climate warming, Atmos. Chemis. Phys., 10(10),5001-5010.
Luo, C., Mahowald, N. M. and del Corral, J., 2003, Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution, J. Geophys. Res., 108(D15), 4447
McCormick, R. A. and Ludwig, J. H., 1967, Climate modification by atmospheric aerosols, Science, 156(3780), 1358-1359.
McGowan, H. A., McTainsh, G. H., ZawarReza, P. and Sturman A. P., 2000, Identifying regional dust transport pathways: application of kinematic trajectory modelling to a Trans-Tasman case, Earth Surf. Proc. Landforms, 25(6), 633-647.
Miller, R. L. and Tegen, I., 1998, Climate response to soil dust aero-sols, Atoms. Env., 24A, 3247-3267.
Morrison, H., Thompson, G. and Tatarskii, V., 2009, Impact of cloud microphysics on the development oftrailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes, Mon. Wea. Rev., 137(3), 991-1007.
Myhre, G., Grini, A., Haywood, J., Stordal, F., Chatenet, B., Tanre, D., Sundet, J. K. and Asaksen, I. S. A., 2003, Modeling the radiative impact of mineral dust during the Saharan Dust Experiment (SHADE) campaign. J. Geophys. Res., 108(D18), 8579.
Obukhov, A. M., 1971, Turbulence in an atmosphere with a non-uniform temperature, Boundary-Layer Meteorol., 2(1), 7-29.
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. and Gill, T. E., 2002, Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product., Rev. Geophys., 40(1), 1002.
Prospero, J. M. and Lamb, P. J., 2003, African droughts and dust transport to the Caribbean: Climate change implications, Science, 302(5647), 1024-1027.
Qin, Y. and Mitchell, R. M. 2009, Characterisation of episodic aerosol types over the Australian continent. Atmos. Chem. Phys., 9(6), 1943-1956.
Rajot, J. L., Triquet, S., Maman, A., Mouget, N., Zakou, A., Formenti, P., Alfaro, S., Desboeufs, K., Chevaillier, S., Chatenet, B., Gaudichet, A., Journet, E. and Marticorena, B., 2008, AMMA dust experiment: An overview of measurements performed during the dry season special observation period (SOP0) at the Banizoumbou (Niger) supersite, J. Geophys. Res., 113(D23), D00C14.
Richardson, M. I., Toigo, A. D. and Newman, C. E., 2007, Planetwrf: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics, J. Geophys. Res., 112, E09, 001.
Rosenfeld, D., 2000, Suppression of rain and snow by urban and industrial air pollution, Science 287(5459), 1793-1796
Schepanski, K., Tegen, I. and Macke, A., 2009, Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos. Chem. Phys., 9(4), 1173-1189.
Shao, Y. and Dong, C. H., 2006, A review on East Asian dust storm climate, modelling and monitoring. Glob. Planet. Change, 52(1), 1-22.
Sokolik, I. and Toon, O., 1996, Direct radiative forcing by anthropogenic airborne mineral aerosols., Nature, 381(6584), 681-683.
Su, L. and Toon, O. B., 2011 Saharan and Asian dust: similarities and differences determined by CALIPSO, AERONET, and a coupled climate-aerosol microphysical model, Atmos. Chem. Phys., 11(7), 3263-3280.
Su, J., Huang, J., Fu, Q., Minnis, P., Ge, J. and Bi, J., 2008, Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements, Atmos. Chem. Phys., 8(10). 2763-2771.
Tegen, I. and Lacis, A. A., 1996, Modeling of the particle size distribution and its influence on the radiative properties of mineral dust aerosol, J. Geophys. Res., 99D, 22897-22914.
Tegen, I., Lacis, A. A. and Fung, I., 1996, The influence on climate forcing of mineral aerosols from disturbed soils, Nature, 380, 419-422.
Tegen, I., Harrison, S. P., Kohfeld, K., Prentice, I. C., Coe, M. and Heimann, M., 2002, Impact of vegetation and preferential source areas on global dust aerosol: results from a model study, J. Geophys. Res. 107(D21), 4576.
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J., Liu, X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, O., Stier, P., Takemura, T. and Tie, X., 2006, Analysis and quantification of the diversities of aerosol life cycles within Aerocom, Atmos. Chemis. Phys., 6(7), 1777-1813.
Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., Liu, Z., Wang, Z., Hara, Y. and Sugimoto, N., 2009, Asian dust transported one full circuit around the globe, Nat. Geosci., 2(8), 557-560.
Wang, Z., Zhang, H., Jing, X. and Wei, X., 2013, Effect of non-spherical dust aerosol on its direct radiative forcing, Atmos. Res., 120-121, 112-126.
Wild, O., Zhu, X. and Prather, M. J., 2000, Fast-J: Accurate simulation of in- and below-cloud photolysis in tropospheric chemical models, J. Atmos. Chem., 37(3), 245-282.
Woodward, S., 2001, Modeling the atmosphere life cycle and radiative impact of mineral dust in the Hadly Center climate model, J. Geophys. Res., 106, 18155-18166.
Yoshioka, M., Mahowald, N. M., Conley, A. J., Collins, W. D., Fillmore, D. W., Zender, C. S. and Coleman, D. B., 2007, Impact of desert dust radiative forcing on Sahel precipitation: relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming, J. Climate, 20, 1445-1467.
Zender, C. S., Bian, H. and Newman, D., 2003, Mineral dust entrainment and deposition (DEAD) model: description and 1990s dust climatology, J. Geophys. Res., 108(D14), 4416
Zhang, Y., 2008, Online-coupled meteorology and chemistry models: history, current status, and outlook., Atmos. Chem. Phys., 8(11), 2895-2932.
Zhang, Y., Hemperly, J., Meskhidze, N. and Skamarock, W. C., 2012, The global Weather Research and Forecasting (GWRF) model: model evaluation, sensitivity study, and future year simulation, Atmos. Clim. Sci. 2(3), 231-253.
Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. and co-authors, 2010, The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments, Atmos. Chem. Phys., 10(18), 8821-8838.