توموگرافی دو بعدی سرعت گروه امواج ریلی در پهنه شمال‌غربی فلات ایران

نویسندگان

1 هیئت علمی موسسه ژئوفیزیک

2 دانشجو

چکیده

چکیده
هدف این مطالعه بدست آوردن نقشه‌های توموگرافی دو بعدی سرعت‌ گروه امواج ریلی برای پهنه شمال‌غربی فلات ایران است. برای این کار از داده‌های زمین‌لرزه‌های محلی مربوط به بازه زمانی 2006 تا 2013 ثبت شده در 10 ایستگاه باند پهن پژوهشگاه بین المللی زلزله‌شناسی و مهندسی زلزله استفاده ‌شد. ابتدا منحنی‌های پاشندگی مد اساسی موج ریلی با استفاده از روش‌ پردازش تک ایستگاهی برآورد شدند. در روش تک ایستگاهی، بعد از اعمال تصحیحات اولیه، منحنی‌های پاشندگی مد اساسی سرعت گروه موج ریلی با استفاده از آنالیز زمان- فرکانس (FTAN) برای مسیرهای مختلف چشمه- ایستگاه برآورد شدند. بعد از برآورد منحنی‌های پاشندگی مد اساسی سرعت گروه، با استفاده از روش وارون سازی خطی- دوبعدی ، نقشه‌های توموگرافی سرعت‌های گروه برای پریودهای 2 تا 50 ثانیه بدست آمدند. نتایج بدست آمده برای پریود 5 ثانیه یک آنومالی کم سرعت زیر آتشفشان سبلان را نشان می‌دهد، در حالیکه زیر آتشفشان سهند آنومالی پرسرعت مشاهده می‌شود. برای پریود 10 ثانیه نتایج متفاوتی مشاهده می‌شود. زیر آتشفشان سبلان آنومالی پرسرعتی مشاهده می‌شود، در حالیکه زیر آتشفشان سهند، و همچنین در امتداد کمان ماگمایی ارومیه-دختر آنومالی کم سرعتی مشاهده می‌شوند. برای پریود 20 ثانیه نتایج در بیشتر مناطق آنومال کم سرعت را نشان می‌دهد. برای پریود 40 ثانیه متفاوت می‌شود، بطوریکه آنومالی کم سرعت در بخش‌های جنوبی و آنومالی پرسرعت در بخش‌های شمالی قابل مشاهده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Two dimensional Rayleigh wave group velocity tomography in Northwestern part of Iranian Plateau

نویسنده [English]

  • Hoshmand Zandi 2
1
2
چکیده [English]

Summary
The explanation of the elastic, or velocity structure of the Earth has long been a goal of the world’s seismologists. For the first few decades of seismological research, the investigation on velocity structure was restricted to the determination of one-dimensional models of the solid Earth and of various regions within it. Seismologists are currently obtaining three dimensional velocity models and are working to resolve finer and finer features in the Earth. The knowledge of seismic velocity structure of the crust and the upper mantle is important for several reasons: these include accurate location of earthquakes, determination of the composition and origin of the outer layers of the Earth, improvement of our ability to discriminate nuclear explosions from earthquake, interpretation of large-scale tectonics and reliable assessment of earthquake hazard. The Iranian part of the Alpine-Himalayan collision zone consists of an assemblage of lithospheric blocks, features a complex tectonic setting, which results from the collision and convergence of the Arabian plate towards Eurasia, thus investigation of the structure of the lithosphere and the asthenosphere of the Iranian plateau is of great interest.
The North West of Iran is affected by important seismic activity concentrated along the North Tabriz Fault. In recent centuries, more than five successive and destructive seismic events have occurred along the North Tabriz Fault. The North West of Iran is particularly rich in geological and Most of NW Iran is located in a volcanic arc zone of Cenozoic age, including the Quaternary. Some of the main geological features in the North western of Iranian plateau include the Sahand Volcano, the Urmia Lake, salt deposits, travertine deposits, springs, limestone caves, tectonic structures and Cenozoic vertebrate fossils. Sahand and Sabalan peaks are the most prominent geological as well as topographic feature in the region.
The aim of this study is to obtain two dimensional tomographic maps of Rayleigh wave group velocity of the Northwest part of Iran plateau. To do this, the local earthquakes data during the period 2006 to 2013, recorded at 10 broadband stations of the International Institute of Earthquake Engineering and Seismology (IIEES) were used. firstly, Rayleigh wave fundamental mode dispersion curves using single-station method were estimated. In single-station method after the preliminary correction, Rayleigh wave group velocity for each source-station using time-frequency analysis (FTAN) were estimated. After estimating group velocity dispersion curves, using a 2D-linear inversion procedure, the group velocity tomographic maps for the period 2-50 s were obtained. Each tomographic map has been discretized with a grid of 0.5° of latitude per 0.5° of longitude. The results at period 5 s show a low velocity anomaly beneath the Sabalan volcano, whereas beneath the Sahand volcano a high velocity anomaly is observed. At period 10 s the results are different. Beneath the Sabalan volcano a high velocity anomaly is observed, whereas beneath the Sahand volcano and also along the Urumieh-Dokhtar Magmatic Arc a low velocity anomaly are observed. At period 20 s in most of the study area, a low velocity anomaly is observed. The results at period 40 s are different, so that a low velocity anomaly in the southern part and a high velocity anomaly in the northern part are observed.

کلیدواژه‌ها [English]

  • Tomography
  • Group velocity
  • Dispersion curves
  • fundamental mode
  • single-station method
  • linear inversion
بایرام‌نژاد، ا.، میرزایی، م. و قیطانچی، م. ر.، 1386، تعیین مدل پوسته بهینه برای شمال غرب ایران، با استفاده از برگردان هم‌زمان زمان‌سیر اموج زمین‌لرزه‌های محلی، م. فیزیک زمین و فضا، 33(3)، 47-59.
بایرام‌نژاد، ا.، قیطانچی.، م.ر. و میرزایی، م.، a1389، تعیین ساختار سرعتی پوسته در شمال‌غرب ایران با استفاده از وارون‌سازی سه‌بُعدی داده‌های زمین‌لرزه‌های محلی، چهاردهمین کنفرانس ژئوفیزیک ایران، 1104-1107.
بایرام‌نژاد، ا.، قیطانچی.، م.ر. و میرزایی، م.، b1389، توموگرافی دوبُعدی پوسته در شمال‌غرب ایران با استفاده از زمین‌لرزه‌های محلی، چهاردهمین کنفرانس ژئوفیزیک ایران، 1099-1103.
حجازی نوقابی، آ.، ثبوتی، ف.، تاتار، م.، مرتضی‌نژاد، غ. م. و قدس، ع. ر.، 1391، محاسبه منحنی‌های پاشندگی گروه ریلی در شمال غرب ایران با استفاده از نوفه‌های لرزه‌ای، پانزدهمین کنفرانس ژئوفیزیک ایران، اردیبهشت 1391، بخش زلزله‌شناسی، 105-108.
ثبوتی، ف.، مرتضی‌نژاد، غ. ر. و قدس، ع.ا.، 1391، ساختار لرزه‌ای پوسته در شمال‌غرب ایران، پانزدهمین کنفرانس ژئوفیزیک ایران، اردیبهشت 1391، بخش زلزله‌شناسی، 89-92.
 
Alinaghi, A., Koulakov, I. and Thybo, H., 2007, Seismic tomographic imaging of P- ans S-waves velocity perturbation in the upper mantle beneath Iran, Geophys. J. Int., 169, 1089-1102.
Amini, S., Shomali, Z. H., Koyi, H. and Roberts, R. G., 2012, Tomographic upper-mantle velocity structure beneath the Iranian Plateau, Tectonophysics, 554-557, 42-49.
Asudeh, I., 1982, Seismic structure of Iran from surface and body wave data, Geophys. J. R. Astron Soc., 71, 715-730.
Backus, G. E. and Gilbert, J. F., 1968, The resolving power of gross Earth data, Geophys. J. R. Astr. Soc., 16, 168-205.
Bassin, C., Laske, G. and Masters, G., 2000, The current limits of resolution for surface wave tomography in North America, EOS. Trans. AGU, 81, F897.
Chen, Y., Badal, J. and HU, J., 2010, Love and Rayleigh wave tomography of the Quighai-Tibet plateau and surrounding areas, Pure Appl. Geophys., 167(10), 1171-1203.
Copley, A. and Jackson, J., 2006, Active tectonics of the Turkish-Iranian Plateau, Tectonics, 25, TC6006.
Dehghani, G. A. and Makris, J., 1984, The Gravity field and crustal structure of Iran, N. Jb. Geol. Palaeont Abh., 168, 215-229.
Ditmar, P. G. and Yanovskaya, T. B., 1987, Generalization of Backus-Gilbert method for estimation of lateral variations of surface wave velocities, Phys. Solid Earth, Izvestia Acad. Sci. USSR, 23(6), 470-477.
Djamour, Y., Vernant, P., Nankali, H. R. and Tavakoli, F., 2011, NW iran-eastern Turkey present-day kinematics: results from the Iranian permanent GPS network, Earth and Planetary Science Letters, 307, 7-34.
Gheitanchi, M. R., 1996, Crustal structure in Nw in Iran, revealed from the 1990 Rudbar aftershock sequence, J. of the Earth and Space Physics, 23, 7-14.
Golonka, J., 2004, Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic, Tectonophysics, 381, 235-273.
Hatzfeld, D. and Molnar, P., 2010, Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan Plateaus and geodynamic implications, Rev. Geophysics., 48, RG2005, doi:10.1029/2009RG000304.
Hearn, T. M. and James, F. Ni., 1994, Pn velocities beneath continental collision zones, the Turkish-Iranian Plateau, Geophys. J. Int., 117, 273-283.
Hessami, K., Pantosti, D., Tabassi, H., Shabanian, E., Abbassi, M. R., Feghhi, K. and Solaymani, S., 2003, Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran: preliminary results, Annals of Geophysics, 46, 903-915. 
Jackson, J., Priestley, K., Allen, M. and Berberian, M., 2002, Active tectonics of the South Caspian Basin, Geophys. J. Int., 148, 214-245.
Karagianni, E. E., Panagiotopoulos, D. G., Panza, G. F., Suhadolc, P., Papazachos, C. B., Papazachos, B. C., Kiratzi, A., Hatzfeld, D., Makropoulos, K., Priestley, K. and Vuan A., 2002, Rayleigh wave group velocity tomography in the Aegean area, Tectonophysics, 358, 187-209.
Levshin, A. L., Ratnikova, L. I. and Berteussen, K. A., 1972, On a frequency-time analysis of oscillations, Ann. Geophys., 28, 211-218.
Levshin, A. L., Yanovskaya, T. B., Lander, A. V., Bukchin, B. G., Barmin, M. P., Ratnikova, L. I. and Its, E.N., 1989, Recording, identification and measurement of surface wave parameters, In: Keilis-borok, V.I. (Ed.), Seismic Surface Waves in a Laterally Inhomogeneous Earth, Kluwer Academic Publishing, Dordrecht, 131-182.
Levshin, A. L., Ratnikova, L. I. and Berger, J., 1992, Peculiarities of surface-wave propagation across central Eurasia, Bull. Seismol. Soc. Am., 82, 2464-2493.
Nasrabadi, A., Tatar, M., Priestley, K. and Sepahvand, M. R., 2008, Continental lithosphere structure beneath the Iranian plateau, from analysis of receiver functions and surface waves dispersion, The 14th World Conference on Earthquake Engineering, October 12-17, Beijing, China.
Maggi, A. and Priestley, K., 2005, Surface waveform tomography of the Turkish-Iranian plateau, Geophys. J. Int., 160, 1068-1080.
Masson, F., Djamour, Y., Van Gorp, S., Chéry, J., Tatar, M., Tavakoli, F., Nankali, H. and Vernant, P., 2006, Extension in NW Iran driven by the motion of the South Caspian Basin, Earth and Planetary Science Letters, 252, 180-188.
Mooney, W. D., Laske, G. and Masters, G., 1998, Crust-5.1: A global crustal model at 5 5 degrees, J. Geophys. Res., 103, 727-747.
Mottaghi, A., Rezapour, M. and Korn, M., 2013, Ambient noise surface wave tomography of the Iranian Plateau, Geophys. J. Int., 193, 452-462.
Rahimi, H., Hamzehloo, H., Vaccari, F. and Panza, G. F., 2014, Shear-wave velocity tomography of the lithosphere-asthenosphere system beneath the Iranian Plateau, Bulletin of the Seismological Society of America, 104(6), 2872-2798.
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadarya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Ghazzi, R. and Karam, G., 2006, GPS constraints pn continental deformation in the Africa-Arabia-Eurasia continental collision zone and implication for the dynamics of plate interactions, J. Geophysical Research Solid Earth, 111,  doi:10.1029/2005JB004051.
Seber, D., Vallve, M., Sandvol, E., Steer, D. and Barazangi, M., 1997, Middle East tectonics: application of geographic information systems (GIS). GSA Today, 7(2), 1-6.
Shad Manaman, N., Shomali, H. and Koyi, H., 2011, New constraints on upper-mantle S-velocity structure and crustal thickness of the Iranian plateau using partitioned waveform inversion, Geophys. J. Int., 184, 247-267.
Tabatabai, Mir. Sh., Bergman, E. and Gheitanchi, M. R., 2008, 3-Dimensional upper mantle velocity structure for Iranian Plateau reveales by  and  tomography, J. of the Earth and Space Physics, 33(3), 13-24.
Taghizadeh-Farahmand, F., Sodoudi, F., Afsari, N. and Ghassemi, M.R., 2010, Lithospheric structure of NW Iran from P and S receiver functios, J. Seismol., 14, 823-836.
Yanovskaya, T. B., 1997, Resolution estimation in the problems of seismic ray tomography, Izv. Phys. Solid Earth, 33(9), 762-765.
Yanovskaya, T. B. and Ditmar P. G., 1990, Smoothness criteria in surface wave tomography, Geophys. J. Int., 102, 63-72.
Yanovskaya, T. B., Kizima, E. S. and Antomova, L. M., 1998, Structure of the crust in the Black Sea and adjoining regions from surface wave data, J. Seismol., 2, 303-316.