بهبود تخمین عمق و اندیس ساختاری چشمه میدان پتانسیل با استفاده از نشانگرهای انحنا

نویسندگان

1 دانشجو کارشناسی ارشد موسسه ژئوفیزیک دانشگاه تهران

2 عضو هیات علمی موسسه ژئوفیزیک دانشگاه تهران

چکیده

انحنا یکی از مشخصه‌های یک منحنی است که در هر نقطه مقدار انحراف آن را از یک خط راست تعیین می‌کند. در تعمیم این خصوصیت به سه بعد ما با یک سطح روبرو هستیم که با توجه به تقاطع صفحه با سطح، بی نهایت منحنی و در نتیجه انحنا در یک نقطه مشخص خواهیم داشت. مناسب‌ترین انحناها آن‌هایی هستند که که از تقاطع یک صفحه‌ی عمود به سطح بدست می‌آیند و انحناهای نرمال نام دارند. منفی‌ترین انحنا یکی از انحناهای نرمال است که در تحلیل و تفسیر کمی آنومالی‌های میدان پتانسیل استفاده می‌شود.
آنومالی‌های میدان پتانسیل برروی منابع وابسته به مقدار تباین خصوصیت فیزیکی موردنظر دارای بیشینه هستند. آنومالی‌ها را می‌توان با یک رابطه ریاضیاتی بیان کرد که این امکان را فراهم می‌کند تا بتوانیم عمق چشمه را از مقدار پیک و مقدار انحنا در پیک بیابیم. این آنومالی‌ها را وابسته به اینکه نوع چشمه از قبل برای ما مشخص باشد یا خیر می‌توان به دودسته‌ که توابع ویژه وابسته به مدلی خاص و مستقل از مدل نامیده می‌شوند، تقسیم‌بندی کرد. ابتدا توابع ویژه از میدان پتانسیل تبدیل یافته محاسبه شوند و انحنا سطح این توابع ویژه، مکان و نوع چشمه را تخمین زد.
روش آنالیز تخمین عمق با استفاده از نشانگرهای انحنا بر روی‌داده‌های مصنوعی بدون نوفه و همراه با نوفه به‌کاربرده شد. درنهایت این روش بر روی‌داده‌های واقعی از معدن سولفیدی موبرون کانادا با استفاده از توابع ویژه آزمایش شد و با استفاده از عدد موج محلی یک اندیس ساختاری برای این معدن تخمین زده‌ شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Improvement In Depth And Structural Index Estimation Of Potential Field Sources By Using Curvature Attributes

نویسنده [English]

  • Seyed Hani Motavalli Anbaran 2
1
2
چکیده [English]

Interpretation of potential field data generally is quantitative or qualitative. An important factor in the issue of interpretation is how much interpreter is confident on data that provides the information needed to achieve the objectives of the study. Reliance on interpretation can be increased by the use of effective methods for parameters determination of causative sources. Although in most of methods not required to know the density or susceptibility contrast, but these methods are based on the assumption that the source is a certain type (horizontal slab, vertical dykes, etc.) and in two-dimension. By selecting the wrong type of sources, large errors may occur. Despite all these problems, numerous automatic techniques are designed that can be applied over the magnetic or gravity anomalies to quickly estimate the depth of sources.
Curvature method is used to analyze and interpretation of potential field anomalies. Potential field anomalies can be transformed into special functions that formed peaks and ridges over isolated sources. All of these special functions have a mathematical form over sources that lead to a common equation to estimate the depth of the source from the peak value and curvature at the peak. Curvature attributes that used at this case called most negative curvature. Special functions are divided into two categories: Model-specific special functions and Model-independent special functions. Model-specific special functions usually are calculated from a transformed potential field for locating of specific sources such as a vertical magnetic contact, vertical density contact, etc. The horizontal gradient magnitude (HGM) and observed potential field (absolute value) are two types of model-specific special functions that formed ridges over specific sources. Model-independent special functions are used to calculate locations for various types of sources from the observational or modified potential field. Total gradient (TG), also called the analytic signal, and local wavenumber (LW) fall into this group.
Usually, special functions need that the potential field undergoes a transformation, such as reduction-to-pole and vertical derivative. For gridded data, eigenvalues of the curvature matrix associated with quadratic surface is fitted to a special function within 3×3 window, to locate and estimate the depth of sources.
Another curvature attributes is shape index that quantitatively stated the local shape in terms of bowl, valley, flat, ridge and dome. Shape index attribute (SHI) and Geometry factor provide a way to easily reject some of invalid estimations.
In this study, method of curvature attributes has been applied on noisy and noise free synthetic data by using Model-specific (HGM and absolute value) and Model-independent special functions (Total gradient and local wavenumber). Finally, this method was tested on real data from Mobrun massive sulfide ore of Canada by using special functions of two models and was estimated a structural index (SI) from local wavenumber special function for the mine. The results of estimating the depth by this method had a good match with the results of the boreholes. Finally, the depth results of this method were compared with Euler deconvolution method which shows that method of using curvature attributes is more accurate in depth estimation.

کلیدواژه‌ها [English]

  • Potential Field
  • Curvature
  • Special function
  • Quadratic surface
  • depth estimation
Abbas, M. A., Fedi, M. and Florio, G., 2014, Improving the local wavenumber method by automatic DEXP transformation, Journal of Applied Geophysics, 111, 250-255.
Barraud, J., 2013, Improving identification of valid depth estimates from gravity gradient data using curvature and geometry analysis, First break, 31(4).
Beiki, M., 2010, Analytic signals of gravity gradient tensor and their application to estimate source location, Geophysics, 75(6), I59-I74.
Beiki, M. and Pedersen, L. B., 2010, Eigenvector analysis of gravity gradient tensor to locate geologic bodies, Geophysics, 75(6), I37-I49.
Cordell, L. and Grauch, V., 1982, Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico, 1982 SEG Annual Meeting, Society of Exploration Geophysicists.
Essa, K. S., 2012, A fast interpretation method for inverse modeling of residual gravity anomalies caused by simple geometry, Journal of Geological Research 2012.
Grant, F. S. and West, G. F., 1965, Interpretation theory in applied geophysics, McGraw-Hill Book.
 
Hansen, R. and Deridder, E., 2006, Linear feature analysis for aeromagnetic data, Geophysics 71(6), L61-L67.
Nabighian, M. N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation." Geophysics, 37(3), 507-517.
Phillips, J. D., Hansen, R., O. and Blakely, R., J., 2007, The use of curvature in potential-field interpretation, Exploration Geophysics, 38(2), 111-119.
Pilkington, M. and Keating, P., 2005, The relationship between local wavenumber and analytic signal in magnetic interpretation, Geophysics, 71(1), L1-L3.
Roberts, A., 2001, Curvature attributes and their application to 3D interpreted horizons, First break, 19(2), 85-100.
Roest, W. R. and Pilkington, M., 1993, Identifying remanent magnetization effects in magnetic data, Geophysics, 58(5), 653-659.
Roest, W. R., Verhoef, J. and Pilkington, M., 1992, Magnetic interpretation using the 3-D analytic

signal, Geophysics, 57(1), 116-125.
Roy, L., Agarval, B. N. P. and Shaw, R. K., 2000, A new concept in Euler deconvolution of isolated gravity anomalies, Geophysical prospecting, 48(3), 559-575.
Salem, A., Ravat, D., Smith, R. S. and Ushijima, K., 2005, Interpretation of magnetic data using an enhanced local wavenumber (ELW) method, Geophysics, 70(2), L7-L12.
Smith, R. S., Thurston, J. B., Dai, T. and MacLeod, I. N., 1998, iSPI TM—The improved source parameter imaging method, Geophysical Prospecting, 46(2), 141-151.
Telford, W. M., Geldart, L. P. and Sheriff, R. E., 1990, Applied geophysics, Cambridge university press.
Thompson, D., 1982, EULDPH: a new technique for making computer-assisted depth estimates from magnetic data, Geophysics, 47(1), 31-37.
Thurston, J. B. and Smith, R. S., 1997, Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI (TM) method, Geophysics, 62(3), 807-813.